5 resultados para ovary hyperstimulation

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To increase transient expression of recombinant proteins in Chinese hamster ovary cells, we have engineered their protein synthetic capacity by directed manipulation of mRNA translation initiation. To control this process we constructed a nonphosphorylatable Ser51Ala site-directed mutant of eIF2, a subunit of the trimeric eIF2 complex that is implicated in regulation of the global rate of mRNA translation initiation in eukaryotic cells. Phosphorylation of eIF2 by protein kinases inhibits eIF2 activity and is known to increase as cells perceive a range of stress conditions. Using single-and dual-gene plasmids introduced into CHO cells by electroporation, we found that transient expression of the eIF2 Ser51Ala mutant with firefly luciferase resulted in a 3-fold increase in reporter activity, relative to cells transfected with reporter only. This effect was maintained in transfected cells for at least 48 h after transfection. Expression of the wild-type eIF2 protein had no such effect. Elevated luciferase activity was associated with a reduction in the level of eIF2 phosphorylation in cells transfected with the mutant eIF2 construct. Transfection of CHO cells with the luciferase-only construct resulted in a marked decrease in the global rate of protein synthesis in the whole cell population 6 h post-transfection. However, expression of the mutant Ser51Ala or wild-type eIF2 proteins restored the rate of protein synthesis in transfected cells to a level equivalent to or exceeding that of control cells. Associated with this, entry of plasmid DNA into cells during electroporation was visualized by confocal microscopy using a rhodamine-labeled plasmid construct expressing green fluorescent protein. Six hours after transfection, plasmid DNA was present in all cells, albeit to a variable extent. These data suggest that entry of naked DNA into the cell itself functions to inhibit protein synthesis by signaling mechanisms affecting control of mRNA translation by eIF2. This work therefore forms the basis of a rational strategy to generically up-regulate transient expression of recombinant proteins by simultaneous host cell engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germ cells in the mouse embryo remain undifferentiated until about 13.5 days post-coitum (dpc), when male germ cells enter mitotic arrest and female germ cells enter meiosis. The molecular signals and transcriptional control mechanisms governing the differential fate of germ cells in males and females remain largely unknown. In order to gain insights into the behavior of germ cells around this period and into likely mechanisms controlling entry into meiosis, we have studied by wholemount in situ hybridization the expression pattern of two germ cell-specific markers, Oct4 and Sycp3, during mouse fetal gonad development. We observed a dynamic wave of expression of both genes in developing ovaries, with Oct4 expression being extinguished in a rostro-caudal wave and Sycp3 being upregulated in a corresponding wave, during the period 13.5-15.5 dpc. These results indicate that entry into meiosis proceeds in a rostro-caudal progression, in turn suggesting that somatically derived signals may contribute to the control of germ cell entry into meiosis in developing ovaries. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG(4) encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 mug mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn(297) was not significantly affected by nocodazole during transient production by this method. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms behind the entry of the primordial follicle into the growing follicle pool remain poorly understood. To investigate this process further, a microarray-based comparison was undertaken between 2-day postpartum mouse ovaries consisting of primordial follicles/naked oocytes only and those with both primordial follicles and newly activated follicles (7-day postpartum). Gene candidates identified included the chemoattractive cytokine stromal derived factor-1 (SDF1) and its receptor CXCR4. SDF1 and CXCR4 have been implicated in a variety of physiological processes including the migration of embryonic germ cells to the gonads. SDF1-alpha expression increased with the developmental stage of the follicle. Embryonic expression was found to be dichotomous post-genii cell migration, with low expression in the female. Immunohistochemical studies nonetheless indicate that the autocrine pattern of expression ligand and receptor begins during embryonic life. Addition of recombinant SDF1-alpha to neonatal mouse ovaries in vitro resulted in significantly higher follicle densities than for control ovaries. TUNEL analysis indicated no detectable difference in populations of apoptotic cells of treated or control ovaries. Treated ovaries also contained a significantly lower percentage of activated follicles as determined by measurement of oocyte diameter and morphological analysis. Treatment of cultured ovaries with an inhibitor of SDF1-alpha, AMD3100, ablated the effect of SDF1-alpha. By retaining follicles in an unactivated state, SDF1/CXCR4 signaling may play an important role in maintaining the size and longevity of the primordial follicle pool. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, strategies for gene identification based on differential gene expression have become increasingly popular, due in part to the development of microarray technology. These strategies are particularly well suited to the identification of genes involved in sex determination and gonadal development, which unlike the development of other organ systems, proceeds along two very different alternative courses, depending on the sex of the embryo. We have used a high-throughput, array-based expression screen to identify several genes expressed sex-specifically in developing mouse gonads. One of these, vanin 1, appears to play a role in mediating migration of mesonephric cells into the male genital ridge. Progress in characterizing other genes arising from the screen is discussed.