151 resultados para osmotic water permeability
em University of Queensland eSpace - Australia
Resumo:
Kidney function and the role of the cloacal complex in osmoregulation was investigated in estuarine crocodile (Crocodylus porosus) exposed to three environmental salinities: hypo-, iso- and hyperosmotic to the plasma. Plasma homeostasis was maintained over the range of salinities. Antidiuresis occurred with increased salinity. Although urine from the kidneys retained an osmotic pressure between 77% and 82% of the plasma, over 93% and 98% of plasma chloride filtered at the glomeruli was reabsorbed during passage through the kidneys under hypo and hyperosmotic conditions, respectively, and only 64% in iso-osmotic water. The kidneys were the primary site of sodium reabsorption under hypo-and hyperosmotic conditions. Secondary processing of urine during storage in the cloaca varied with salinity. During post renal storage of urine, the difference in urine osmotic pressure increased from -26.1 +/- 15.5 to 35.66 +/- 9.29 mOsM with increased salinity, and potassium concentration of urine increased over 3-fold in C. porosus from freshwater. The almost complete reabsorption of both sodium and chloride under hyperosmotic conditions indicates the necessity for secretory activity by the lingual salt glands. The osmoregulatory response of the kidneys and cloacal complex to environmental salinity is both plastic and complementary. (C) 1998 Elsevier Science Inc.
Resumo:
A sample of recombinant inbred lines (RILs) was derived from a bi-parental cross between Lemont and BK88-BR6, which contrasted in maintenance of leaf water potential (LWP) and expression of osmotic adjustment (OA). Genotypic variation for LWP and OA, and their associations with yield determination under water deficit, was studied in a series of five field experiments. Genotypic variation in the maintenance of high LWP was consistent across water deficit experiments. In the determination of genotypic variation in the maintenance of LWP, rate of water deficit was not an important factor influencing ranking, but degree of water deficit, and phenological development stage were important, particularly around heading. Genotypic variation in expression of OA was also observed under water deficits during both vegetative and flowering stages but ranking was inconsistent across experiments. This was in part because of large experimental errors associated with its measurement, but also because the expression of OA was associated with extent of decline of LWP. The relationship between OA and LWP was demonstrated when data were combined across experiments for vegetative and flowering stages. Under water-limited conditions around flowering, grain yield reduction was mainly due to a increased spikelet sterility. Variation in OA was not related to grain yield nor yield components. There were however, negative phenotypic and genetic correlations between LWP and percentage spikelet sterility measured at flowering stage on panicles at the same development stage during a water deficit treatment. This suggests that traits contributing to the maintenance of high LWP minimized the effects of water deficit on spikelet sterility and consequently grain yield. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount Of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca2+ from the sealed t-system of toad fibers Occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by
Resumo:
Experiments involving 14 accessions of Panicum miliaceum L. (Proso millet) and 11 accessions of Setaria italica L. (Foxtail millet) have demonstrated variability in the degree of osmoregulative capacity among these accessions. Birdseed millet is generally claimed to be sensitive to drought stress, apparently because of a shallow root system. Accessions with high osmoregulative capacity demonstrate at least some drought tolerance. Osmoregulative capacity was measured on flag leaves of headed millet plants in pots undergoing water stress in a controlled environment chamber. Osmoregulative capacity was determined from the relationship between osmotic potential and leaf water potential; and the logarithmic relationship between osmotic potential and relative water content. The group of accessions of S. italica showed an overall level of osmoregulative capacity which was greater than that observed for the group of P. miliaceum accessions. Four accessions of S. italica (108042, 108463, 108541 and 108564) and one accession of P. miliaceum (108104) demonstrated high osmoregulative capacity. Differences of 1.05 MPa or more between observed and estimated osmotic potential were found at relative water contents of 80 % among these accessions. The extent of osmoregulative capacity was associated with osmotic potential at full turgor and the rate of decline in osmotic potential as leaf water potentail declined.
Resumo:
In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Rates of food intake in animals consuming abundant prey can be constrained by the rates of digestion or excretion of ingested substances, such as salt, particularly so in the animals that regularly migrate between freshwater and saltwater environments. We tested this hypothesis in a long-distance migrant shorebird, the eastern curlew Numenius madagascariensis (suborder Charadrii), foraging on intertidal decapods in eastern Australia. We predicted that if food intake rates are constrained osmotically, individuals with access to freshwater and less saline prey (FW group) would have higher rates of food and water intake than individuals with seawater-only access (SW group). Food intake rates did not differ between the FW and SW groups (0.14 g ash-free dry mass min(-1)), nor did the water influx rates (0.75 g min(-1)). Salt intake rates were lower at FW sites (19.3 versus 23.3 mg NaCl min(-1)) and overall they were similar to those of marine birds. Food intake rate in the eastern curlew appeared limited by digestive rather than by osmoregulatory capacity.
Resumo:
Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.
Resumo:
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.