188 resultados para optimal-stocking model
em University of Queensland eSpace - Australia
Resumo:
Optimal sampling times are found for a study in which one of the primary purposes is to develop a model of the pharmacokinetics of itraconazole in patients with cystic fibrosis for both capsule and solution doses. The optimal design is expected to produce reliable estimates of population parameters for two different structural PK models. Data collected at these sampling times are also expected to provide the researchers with sufficient information to reasonably discriminate between the two competing structural models.
Resumo:
Resources can be aggregated both within and between patches. In this article, we examine how aggregation at these different scales influences the behavior and performance of foragers. We developed an optimal foraging model of the foraging behavior of the parasitoid wasp Cotesia rubecula parasitizing the larvae of the cabbage butterfly Pieris rapae. The optimal behavior was found using stochastic dynamic programming. The most interesting and novel result is that the effect of resource aggregation within and between patches depends on the degree of aggregation both within and between patches as well as on the local host density in the occupied patch, but lifetime reproductive success depends only on aggregation within patches. Our findings have profound implications for the way in which we measure heterogeneity at different scales and model the response of organisms to spatial heterogeneity.
Resumo:
1. Parasitoids are predicted to spend longer in patches with more hosts, but previous work on Cotesia rubecula (Marshall) has not upheld this prediction, Tests of theoretical predictions may be affected by the definition of patch leaving behaviour, which is often ambiguous. 2. In this study whole plants were considered as patches and assumed that wasps move within patches by means of walking or flying. Within-patch and between-patch flights were distinguished based on flight distance. The quality of this classification was tested statistically by examination of log-survivor curves of flight times. 3. Wasps remained longer in patches with higher host densities, which is consistent with predictions of the marginal value theorem (Charnov 1976). tinder the assumption that each flight indicates a patch departure, there is no relationship between host density and leaving tendency. 4. Oviposition influences the patch leaving behaviour of wasps in a count down fashion (Driessen et al. 1995), as predicted by an optimal foraging model (Tenhumberg, Keller & Possingham 2001). 5. Wasps spend significantly longer in the first patch encountered following release, resulting in an increased rate of superparasitism.
Resumo:
and human capital externalities. Because of such externalities, education investment is too low and fertility is too high. While education subsidies are the conventional means to deal with these problems, we show that the optimal policy also comprises debt even when distortionary taxes are used. The reason is that debt tips the usual trade-off between children's quantity and quality in favor of the latter by increasing the bequest cost of children. The optimal debt-output ratio exceeds 10% for plausible parameterization. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
In this paper we investigate the trade-off faced by regulators who must set a price for an intermediate good somewhere between the marginal cost and the monopoly price. We utilize a growth model with monopolistic suppliers of intermediate goods. Investment in innovation is required to produce a new intermediate good. Marginal cost pricing deters innovation, while monopoly pricing maximizes innovation and economic growth at the cost of some static inefficiency. We demonstrate the existence of a second-best price above the marginal cost but below the monopoly price, which maximizes consumer welfare. Simulation results suggest that substantial reductions in consumption, production, growth, and welfare occur where regulators focus on static efficiency issues by setting prices at or near marginal cost.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
1. A model of the population dynamics of Banksia ornata was developed, using stochastic dynamic programming (a state-dependent decision-making tool), to determine optimal fire management strategies that incorporate trade-offs between biodiversity conservation and fuel reduction. 2. The modelled population of B. ornata was described by its age and density, and was exposed to the risk of unplanned fires and stochastic variation in germination success. 3. For a given population in each year, three management strategies were considered: (i) lighting a prescribed fire; (ii) controlling the incidence of unplanned fire; (iii) doing nothing. 4. The optimal management strategy depended on the state of the B. ornata population, with the time since the last fire (age of the population) being the most important variable. Lighting a prescribed fire at an age of less than 30 years was only optimal when the density of seedlings after a fire was low (< 100 plants ha(-1)) or when there were benefits of maintaining a low fuel load by using more frequent fire. 5. Because the cost of management was assumed to be negligible (relative to the value of the persistence of the population), the do-nothing option was never the optimal strategy, although lighting prescribed fires had only marginal benefits when the mean interval between unplanned fires was less than 20-30 years.
Resumo:
A modelling framework is developed to determine the joint economic and environmental net benefits of alternative land allocation strategies. Estimates of community preferences for preservation of natural land, derived from a choice modelling study, are used as input to a model of agricultural production in an optimisation framework. The trade-offs between agricultural production and environmental protection are analysed using the sugar industry of the Herbert River district of north Queensland as an example. Spatially-differentiated resource attributes and the opportunity costs of natural land determine the optimal tradeoffs between production and conservation for a range of sugar prices.
Resumo:
Conditions which influence the viability, integrity, and extraction efficiency of the isolated perfused rat liver were examined to establish optimal conditions for subsequent work in reperfusion injury studies including the choice of buffer, use of oncotic agents, hematocrit, perfusion flow rate, and pressure. Rat livers were perfused with MOPS-buffered Ringer solution with or without erythrocytes. Perfusates were collected and analyzed for blood gases, electrolytes, enzymes, radioactivity in MID studies, and lignocaine in extraction studies. Liver tissue was sampled for histological examinations, and wet:dry weight of the liver was also determined. MOPS-buffered Ringer solution was found to be superior to Krebs bicarbonate buffer, in terms of pH control and buffering capacity, especially during any prolonged period of liver perfusion. A pH of 7.2 is chosen for perfusion since this is the physiological pH of the portal blood. The presence of albumin was important as an oncotic agent, particularly when erythrocytes were used in the perfusate. Perfusion pressure, resistance, and vascular volume are how-dependent and the inclusion of erythrocytes in the perfusate substantially altered the flow characteristics for perfusion pressure and resistance but not vascular volume. Lignocaine extraction was relatively flow-independent. Perfusion injury as defined by enzyme release and tissue fine structure was closely related to the supply of O-2. The optimal conditions for liver perfusion depend upon an adequate supply of oxygen. This can be achieved by using either erythrocyte-free perfusate at a how rate greater than 6 ml/min/g liver or a 20% erythrocyte-containing perfusate at 2 ml/min/g. (C) 1996 Academic Press, Inc.
Resumo:
We have established a surviving model of isolated limb perfusion using xenografts of the human melanoma cell line MM 96L injected subcutaneously into the hindlimb of a nude rat, The femoral artery and vein were cannulated via the left renal artery and vein and the hind limb was isolated using tourniquets. The limb was perfused with Krebs Heinseleit buffer at 37 degrees C containing 4.7% bovine serum albumin at a constant flow rate of 4 mi per min for 30-60 min with 100% survival of the animals, Tumour vascularization and blood flow were demonstrated using vascular casts and [Cr-51]-microspheres. Following the addition of melphalan (15 or 100 mu g/ml), drug concentrations in the perfusate, tissues and systemic circulation were determined using high pressure liquid chromatography (HPLC), Systemic leakage, assessed using [I-125]albumin and melphalan and detected by a gamma-counter and HPLC respectively, was <0.5%. The melphalan concentration and tissue flow rate in the tumour deposits were 40 and 30% respectively, when compared with the surrounding subcutaneous tissue, At a dose of 15 mu g/ml, melphalan caused a reduction in tumour growth after 60 min perfusion, and a significant reduction in tumour size was seen when the melphalan dose was 100 mu g/ml. The surviving nude rat model of isolated limb perfusion for recurrent melanoma will allow examination of optimal perfusion conditions, along with the pharmacokinetics, pharmacodynamics and efficacy of melphalan and other drugs.
Resumo:
The optimal dosing schedule for melphalan therapy of recurrent malignant melanoma in isolated limb perfusions has been examined using a physiological pharmacokinetic model with data from isolated rat hindlimb perfusions (IRHP), The study included a comparison of melphalan distribution in IRHP under hyperthermia and normothermia conditions. Rat hindlimbs were perfused with Krebs-Henseleit buffer containing 4.7% bovine serum albumin at 37 or 41.5 degrees C at a flow rate of 4 ml/min. Concentrations of melphalan in perfusate and tissues were determined by high performance liquid chromatography with fluorescence detection, The concentration of melphalan in perfusate and tissues was linearly related to the input concentration. The rate and amount of melphalan uptake into the different tissues was higher at 41.5 degrees C than at 37 degrees C. A physiological pharmacokinetic model was validated from the tissue and perfusate time course of melphalan after melphalan perfusion. Application of the model involved the amount of melphalan exposure in the muscle, skin and fat in a recirculation system was related to the method of melphalan administration: single bolus > divided bolus > infusion, The peak concentration of melphalan in the perfusate was also related to the method of administration in the same order, Infusing the total dose of melphalan over 20 min during a 60 min perfusion optimized the exposure of tissues to melphalan whilst minimizing the peak perfusate concentration of melphalan. It is suggested that this method of melphalan administration may be preferable to other methods in terms of optimizing the efficacy of melphalan whilst minimizing the limb toxicity associated with its use in isolated limb perfusion.
Resumo:
Lipophilic conjugates of the antitumor drug methotrexate (MTX) with lipoamino acids (LAAs) have been previously described as a tool to enhance MTX passive entrance into cells, overcoming a form of transport resistance which makes tumour cells insensitive to the antimetabolite. A knowledge of the mechanisms of interaction of such lipophilic derivatives with cell membranes could be useful for planning further lipophilic MTX derivatives with an optimal antitumour activity. To this aim, a calorimetric study was undertaken using a biomembrane model made from synthetic 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC) multilamellar liposomes. The effects of MTX and conjugates on the phase transition of liposomes were investigated using differential scanning calorimetry. The interaction of pure MTX with the liposomes was limited to the outer part of the phospholipid bilayers, due to the polar nature of the drug. Conversely, its lipophilic conjugates showed a hydrophobic kind of interaction, perturbing the packing order of DPPC bilayers. In particular, a reduction of the enthalpy of transition from the gel to the liquid crystal phase of DPPC membranes was observed. Such an effect was related to the structure and mole fraction of the conjugates in the liposomes. The antitumour activity of MTX conjugates was evaluated against cultures of a CCRF-CEM human leukemic T-cell line and a related MTX resistant sub-line. The in vitro cell growth inhibitory activity was higher for bis(tetradecyl) conjugates than for both the other shorter- and longer-chain derivatives. The biological effectiveness of the various MTX derivatives correlated very well with the thermotropic effects observed on the phase transition of DPPC biomembranes. (C), 2001 Elsevier Science B.V All rights reserved.
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.