44 resultados para object mining
em University of Queensland eSpace - Australia
Resumo:
Results of two experiments are reported that examined how people respond to rectangular targets of different sizes in simple hitting tasks. If a target moves in a straight line and a person is constrained to move along a linear track oriented perpendicular to the targetrsquos motion, then the length of the target along its direction of motion constrains the temporal accuracy and precision required to make the interception. The dimensions of the target perpendicular to its direction of motion place no constraints on performance in such a task. In contrast, if the person is not constrained to move along a straight track, the targetrsquos dimensions may constrain the spatial as well as the temporal accuracy and precision. The experiments reported here examined how people responded to targets of different vertical extent (height): the task was to strike targets that moved along a straight, horizontal path. In experiment 1 participants were constrained to move along a horizontal linear track to strike targets and so target height did not constrain performance. Target height, length and speed were co-varied. Movement time (MT) was unaffected by target height but was systematically affected by length (briefer movements to smaller targets) and speed (briefer movements to faster targets). Peak movement speed (Vmax) was influenced by all three independent variables: participants struck shorter, narrower and faster targets harder. In experiment 2, participants were constrained to move in a vertical plane normal to the targetrsquos direction of motion. In this task target height constrains the spatial accuracy required to contact the target. Three groups of eight participants struck targets of different height but of constant length and speed, hence constant temporal accuracy demand (different for each group, one group struck stationary targets = no temporal accuracy demand). On average, participants showed little or no systematic response to changes in spatial accuracy demand on any dependent measure (MT, Vmax, spatial variable error). The results are interpreted in relation to previous results on movements aimed at stationary targets in the absence of visual feedback.
Resumo:
While a number of studies have shown that object-extracted relative clauses are more difficult to understand than subject-extracted counterparts for second language (L2) English learners (e.g., Izumi, 2003), less is known about why this is the case and how they process these complex sentences. This exploratory study examines the potential applicability of Gibson's (1998, 2000) Syntactic Prediction Locality Theory (SPLT), a theory proposed to predict first language (L1) processing difficulty, to L2 processing and considers whether the theory might also account for the processing difficulties of subject- and object-extracted relative clauses encountered by L2 learners. Results of a self-paced reading time experiment from 15 Japanese learners of English are mainly consistent with the reading time profile predicted by the SPLT and thus suggest that the L1 processing theory might also be able to account for L2 processing difficulty.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.
Resumo:
The new technologies for Knowledge Discovery from Databases (KDD) and data mining promise to bring new insights into a voluminous growing amount of biological data. KDD technology is complementary to laboratory experimentation and helps speed up biological research. This article contains an introduction to KDD, a review of data mining tools, and their biological applications. We discuss the domain concepts related to biological data and databases, as well as current KDD and data mining developments in biology.
Resumo:
This paper develops an interactive approach for exploratory spatial data analysis. Measures of attribute similarity and spatial proximity are combined in a clustering model to support the identification of patterns in spatial information. Relationships between the developed clustering approach, spatial data mining and choropleth display are discussed. Analysis of property crime rates in Brisbane, Australia is presented. A surprising finding in this research is that there are substantial inconsistencies in standard choropleth display options found in two widely used commercial geographical information systems, both in terms of definition and performance. The comparative results demonstrate the usefulness and appeal of the developed approach in a geographical information system environment for exploratory spatial data analysis.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents a means of structuring specifications in real-time Object-Z: an integration of Object-Z with the timed refinement calculus. Incremental modification of classes using inheritance and composition of classes to form multi-component systems are examined. Two approaches to the latter are considered: using Object-Z's notion of object instantiation and introducing a parallel composition operator similar to those found in process algebras. The parallel composition operator approach is both more concise and allows more general modelling of concurrency. Its incorporation into the existing semantics of real-time Object-Z is presented.
Resumo:
The principle of using induction rules based on spatial environmental data to model a soil map has previously been demonstrated Whilst the general pattern of classes of large spatial extent and those with close association with geology were delineated small classes and the detailed spatial pattern of the map were less well rendered Here we examine several strategies to improve the quality of the soil map models generated by rule induction Terrain attributes that are better suited to landscape description at a resolution of 250 m are introduced as predictors of soil type A map sampling strategy is developed Classification error is reduced by using boosting rather than cross validation to improve the model Further the benefit of incorporating the local spatial context for each environmental variable into the rule induction is examined The best model was achieved by sampling in proportion to the spatial extent of the mapped classes boosting the decision trees and using spatial contextual information extracted from the environmental variables.
Resumo:
This paper presents a case study that explores how operator digging style juxtaposes with mechanical capability for a class of hydraulic mining excavators. The relationships between actuator and digging forces are developed and these are used to identify the excavator's capability to apply forces in various directions. Two distinct modes of operation are examined to see how they relate to the mechanical capabilities of the linkage and to establish if one has merit over the other. It is found that one of these styles results in lower loading of the machine.
Resumo:
The large number of wetlands treating mining wastewaters around the world have mostly been constructed in temperate environments. Wetlands have yet to be proven in low rainfall, high evaporation environments and such conditions are common in many parts of Australia. BHP Australia Coal is researching whether wetlands have potential in central Queensland to treat coal mining wastewaters. In this region, mean annual rainfall is < 650 mm and evaporation > 2 000 mm. A pilot-scale wetland system has been constructed at an open-cut coal mine. The system comprises six treatment cells, each 125 m long and 10 m wide. The system is described in the paper and some initial results presented. Results over the first fourteen months of operation have shown that although pH has not increased enough to enable reuse or release of the water, sulfate reduction has been observed in parts of the system, as shown by the characteristic black precipitate and smell of hydrogen sulfide emanating from the wetlands. These encouraging signs have led to experiments aimed at identifying the factors limiting sulfate reduction. The first experiment, described herein, included four treatments where straw was overlain by soil and the water level varied, being either at the top of the straw, at the top of the soil, or about 5 cm above the soil. The effect of inoculating with sulfate-reducing bacteria was investigated. Two controls were included, one covered and one open, to enable the effect of evaporation to be determined. The final treatment consisted of combined straw/cattle manure overlain with soil. Results showed that sulfate reduction did occur, as demonstrated by pH increases and lowering of sulfate levels. Mean pH of the water was significantly higher after 19 days; in the controls, pH was < 3.3, whereas in the treatments, pH ranged from 5.4 to 6.7. The best improvement in sulfate levels occurred in the straw/cattle manure treatment. (C) 1997 IAWQ. Published by Elsevier Science Ltd.
Resumo:
The Edinburgh-Cape Blue Object Survey is a major survey to discover blue stellar objects brighter than B similar to 18 in the southern sky. It is planned to cover an area of sky of 10 000 deg(2) with \b\ > 30 degrees and delta < 0 degrees. The blue stellar objects are selected by automatic techniques from U and B pairs of UK Schmidt Telescope plates scanned with the COSMOS measuring machine. Follow-up photometry and spectroscopy are being obtained with the SAAO telescopes to classify objects brighter than B = 16.5. This paper describes the survey, the techniques used to extract the blue stellar objects, the photometric methods and accuracy, the spectroscopic classification, and the limits and completeness of the survey.