49 resultados para nozzle shapes
em University of Queensland eSpace - Australia
Resumo:
Three experiments examined the relationship between distinctiveness and self-schematicity. Experiment I revealed that people were more likely to be self-schematic in domains of strong performance when they felt distinct from family and peers in those domains. Experiments 2 and 3 extended this finding into the arena of stereotypes by demonstrating that people were more likely to be self-schematic in domains of strong performance when their performance was counterstereotypic rather than stereotypic. In particular, African Americans and women were more likely to be schematic for intelligence than Caucasians and men if they performed well academically, whereas Caucasians-especially men-were more likely than African Americans to be schematic for athletics if they performed well athletically. These results suggest that counterstereotypic behavior plays a uniquely powerful role in the development of the self-concept.
Resumo:
Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
Research with adults has shown a preference for average-weight female figures with waist-to-hip ratios (WHR) of 0.7, and average weight male figures with waist-to-hip ratios of 0.9. This study investigated the development of preferences for WHR sizes as well as preferences for specific body weights. Five-hundred eleven children ranging in age from 6 to 17 were presented with drawings of 12 male and 12 female silhouettes varying in weight and WHR and asked to select one they thought looked the nicest or most attractive. The youngest children showed preferences for the underweight figures, changing to consistent preferences for the average weight figures in the teenage years. The developmental curves for waist-to-hip ratio preferences were linear, changing gradually over time to become more adult-like. Potential developmental models for the development of preferences for specific body shapes are considered in relation to these data.
Resumo:
Nucleation is the first stage in any granulation process where binder liquid first comes into contact with the powder. This paper investigates the nucleation process where binder liquid is added to a fine powder with a spray nozzle. The dimensionless spray flux approach of Hapgood et al. (Powder Technol. 141 (2004) 20) is extended to account for nonuniform spray patterns and allow for overlap of nuclei granules rather than spray drops. A dimensionless nuclei distribution function which describes the effects of the design and operating parameters of the nucleation process (binder spray characteristics, the nucleation area ratio between droplets and nuclei and the powder bed velocity) on the fractional surface area coverage of nuclei on a moving powder bed is developed. From this starting point, a Monte Carlo nucleation model that simulates full nuclei size distributions as a function of the design and operating parameters that were implemented in the dimensionless nuclei distribution function is developed. The nucleation model was then used to investigate the effects of the design and operating parameters on the formed nuclei size distributions and to correlate these effects to changes of the dimensionless nuclei distribution function. Model simulations also showed that it is possible to predict nuclei size distributions beyond the drop controlled nucleation regime in Hapgood's nucleation regime map. Qualitative comparison of model simulations and experimental nucleation data showed similar shapes of the nuclei size distributions. In its current form, the nucleation model can replace the nucleation term in one-dimensional population balance models describing wet granulation processes. Implementation of more sophisticated nucleation kinetics can make the model applicable to multi-dimensional population balance models.
Resumo:
A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are represented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the bead-on-a-string effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.