9 resultados para novel view

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)-the causative agents of rheumatic fever and subsequent rheumatic heart disease-was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel nanocomposite of iron oxide and silicate, prepared through a reaction between a solution of iron salt and a dispersion of Laponite clay, was used as a catalyst for the photoassisted Fenton degradation of azo-dye Orange II. This catalyst is much cheaper than the Nafion-based catalysts, and our results illustrate that it can significantly accelerate the degradation of Orange II under the irradiation of UV light (lambda = 254 nm). An advantage of the catalyst is its long-term stability that was confirmed through using the catalyst for multiple runs in the degradation of Orange II. The effects of the H2O2 molar concentration, solution pH, wavelength and power of the LTV light, catalyst loading, and initial Orange II concentration on the degradation of Orange 11 were studied in detail. In addition, it was also found that discoloration of Orange 11 undergoes a faster kinetics than mineralization of Orange II and 75% total organic carbons of 0.1 mM Orange II can be eliminated after 90 min in the presence of 1.0 g of Fe-nanocomposite/L, 4.8 mM H2O2, and 1 x 8W UVC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel laponite RD clay-based Fe nanocomposite (Fe-Lap-RD) has been successfully synthesized through a reaction between a solution of iron salt and an aqueous dispersion of laponite RD clay. The X-ray diffraction (XRD) results reveal that the Fe-Lap-RD mainly consists of Fe2O3 (maghemite) and Fe2Si4O10(OH)2 (iron silicate hydroxide), which have tetragonal and monoclinic structures, respectively, and has a high specific surface area as well as a high pore volume. The photo-catalytic activity of the Fe-Lap-RD was examined in the photo-assisted degradation of an organic azo dye Orange II. It was found that the mineralization of Orange 11 undergoes a slower kinetics than discoloration, and 70% total organic carbon (TOC) of 0.2 mM Orange 11 can be removed in 90 min, implying that the Fe-Lap-RD exhibited a high photo-catalytic activity in the presence of H2O2 and UV light (254 nm) in the photo-assisted degradation of Orange II. In addition, our experiments also illustrate that the Fe-Lap-RD has a long-term stability but is of low cost. This study illustrates the possibility of photo-assisted degradation of organic compounds without the requirements to remove the Fe ions after reaction. Two possible catalytic reaction mechanisms are also proposed. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method to prepare mesoporous zirconia was developed. The synthesis was carried out in the presence of PEO surfactants via solid-state reaction. The materials exhibit strong diffraction peak at low 2-theta angle and their nitrogen adsorption/desorption isotherms are typical of IV type with H3 hysteresis loops. The pore structure examined by TEM can be described as wormhole domains. The tetragonal zirconia nanocrystals are uniform in size (around 1.5nm) and their pores center at around 4.6nm. The zirconia nanocrystal growth is mainly via an aggregation mechanism. This study also reveals that the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stability of zirconia. The ratio of NaOH to ZrOCl2, crystallization and calcination temperature play an important role in the synthesis of mesoporous zirconia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of botulinum neurotoxins for the treatment of muscle hyperactivity and spasticity disorders has been remarkably successful, owing to the abilities of the toxins to elicit prolonged localized paralysis and the rarity of serious adverse effects. However, botulinum toxins are the most deadly protein toxins known, and existing antidotes possess limited effectiveness. Paradoxically, in situ, the intoxicated motoneuron does not die. It reacts by emanating a sprouting network known to implement new functional synapses, leading to resumption of neurotransmission. Recent studies have highlighted ways of accelerating this natural recovery process to overcome paralysis successfully. Developing new therapeutic strategies and treatments for botulism will require more research into the molecular understanding of this 'naturally occurring' recovery process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by H-1 NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends ( RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines ( L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.