89 resultados para nonpolyposis colorectal cancer
em University of Queensland eSpace - Australia
Resumo:
Hereditary nonpolyposis colorectal cancer syndrome (HNPCC) is an autosomal dominant condition accounting for 2–5% of all colorectal carcinomas as well as a small subset of endometrial, upper urinary tract and other gastrointestinal cancers. An assay to detect the underlying defect in HNPCC, inactivation of a DNA mismatch repair enzyme, would be useful in identifying HNPCC probands. Monoclonal antibodies against hMLH1 and hMSH2, two DNA mismatch repair proteins which account for most HNPCC cancers, are commercially available. This study sought to investigate the potential utility of these antibodies in determining the expression status of these proteins in paraffin-embedded formalin-fixed tissue and to identify key technical protocol components associated with successful staining. A set of 20 colorectal carcinoma cases of known hMLH1 and hMSH2 mutation and expression status underwent immunoperoxidase staining at multiple institutions, each of which used their own technical protocol. Staining for hMSH2 was successful in most laboratories while staining for hMLH1 proved problematic in multiple labs. However, a significant minority of laboratories demonstrated excellent results including high discriminatory power with both monoclonal antibodies. These laboratories appropriately identified hMLH1 or hMSH2 inactivation with high sensitivity and specificity. The key protocol point associated with successful staining was an antigen retrieval step involving heat treatment and either EDTA or citrate buffer. This study demonstrates the potential utility of immunohistochemistry in detecting HNPCC probands and identifies key technical components for successful staining.
Resumo:
Attempts to classify colorectal cancer into subtypes based upon molecular characterisation are overshadowed by the classical stepwise model in which the adenoma-carcinoma sequence serves as the morphological counterpart. Clarity is achieved when cancers showing DNA microsatellite instability (MSI) are distinguished as sporadic MSI-low (MSI-L), sporadic MSI-high (MSI-H) and hereditary non-polyposis colorectal cancer (HNPCC). Divergence of the 'methylator' pathway into MSI-L and MSI-H is at least partly determined by the respective silencing of MGMT and hMLH1. Multiple differences can be demonstrated between sporadic and familial (HNPCC) MSI-H colorectal cancer with respect to early mechanisms, evolution, molecular characterisation, demographics and morphology. By acknowledging the existence of multiple pathways, rapid advances in the fields of basic and translational research will occur and this will lead to improved strategies for the prevention, early detection and treatment of colorectal cancer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The past decade has seen the emergence of new pathways in the development of colorectal cancer. There is now clear evidence that subsets of these tumours do not show chromosomal instability and do not follow the suppressor pathway. Instead, about 15% of colorectal cancers are characterised by microsatellite instability (MSI). This feature arises through defective DNA mismatch repair, which is related either to a germline mutation (as in hereditary non-polyposis colorectal carcinoma) or to failure to express a mismatch-repair gene. CpG-island methylation has been linked to sporadic cancers with a high frequency of MSI. This type of methylation leads to loss of gene expression when it occurs in the promoter region of a gene. Tumours may have high or low type C (cancer-related) CpG-island methylation. When methylation affects hMLH1 (mismatch repair gene), the resultant cancer has high MSI.
Resumo:
Morphological and molecular studies are beginning to distinguish separate evolutionary pathways for colorectal cancer, The serrated pathway encompassing hyperplastic aberrant crypt foci, hyperplastic polyps. mixed polyps, and serrated adenoma is increasingly being linked with genetic alterations, including DNA methylation, DNA microsatellite instability, Ii-ras mutation, and loss of chromosome Ip, The importance of the serrated pathway has been underestimated in terms of its frequency and potential for rapid progression, Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Hyperplastic polyposis is a loosely defined syndrome initially thought not to confer a clinically important predisposition to colorectal cancer. The aim of the current study was to examine the clinical, histologic, and molecular features of a prospective series of cases meeting a strict definition of the condition. Twelve patients were identified, seven of whom had developed colorectal cancer. Most polyps were hyperplastic, but 11 patients also had polyps containing dysplasia as either serrated adenomas. mixed polyps, or traditional adenomas. The mean percentage of dysplastic polyps in patients with cancer was 35%, and in patients without cancer, 11%(p < 0.05). Microsatellite instability (MSI) was present in 3 of 47 hyperplastic polyps and two of right serrated adenomas. Kras was mutated in 8 of 47 hyperplastic polyps and two of eight serrated adenomas. No polyps showed loss of heterozygosity of chromosomes 5q, 1p, or 18q. Two of seven cancers showed a high level of MSI. It is concluded that hyperplastic polyposis is associated with a high risk of colorectal cancer. Hyperplastic polyps are the dominant type of polyp, but most cases have some dysplastic epithelium. A higher proportion of dysplastic polyps is associated with increased cancer risk. Clonal generic changes are observed in some hyperplastic polyps and serrated adenomas.
Resumo:
High-level microsatellite instability (AISI-H) is demonstrated in 10 to 15% of sporadic colorectal cancers and in most cancers presenting In the inherited condition hereditary nonpolyposis colorectal cancer (HNPCC). Distinction between these categories of MSI-H cancer is of clinical importance and the aim of this study was to assess clinical, pathological, and molecular features that might he discriminatory. One hundred and twelve MSI-H colorectal cancers from families fulfilling the Bethesda criteria were compared with 57 sporadic MSI-H colorectal cancers. HNPCC cancers presented at a lower age (P < 0.001) with no sporadic MSI-H cancer being diagnosed before the age of 57 years. MSI was less extensive in HNPCC cancers with 72% microsatellite markers showing band shifts compared with 87% in sporadic tumors (P < 0.001). Absent immunostaining for hMSH2 was only found in HNPCC tumors. Methylation of bMLH1 was observed in 87% of sporadic cancers but also in 55% of HNPCC tumors that showed loss of expression of hMLH1 (P = 0.02). HNPCC cancers were more frequently characterized by aberrant beta -catenin immunostaining as evidenced by nuclear positivity (P < 0.001). Aberrant p53 immunostaining was infrequent in both groups. There were no differences with respect to 5q loss of heterozygosity or codon 12 K-ras mutation, which were infrequent in both groups. Sporadic MSI-H cancers were more frequently heterogeneous (P < 0.001), poorly differentiated (P = 0.02), mucinous (P = 0.02), and proximally located (P = 0.04) than RNPCC tumors. In sporadic MSI-H cancers, contiguous adenomas were likely to be serrated whereas traditional adenomas were dominant in HNPCC. Lymphocytic infiltration was more pronounced in HNPCC but the results did not reach statistical significance. Overall, HNPCC cancers were more like common colorectal cancer in terms of morphology and expression of beta -catenin whereas sporadic MSI-H cancers displayed features consistent with a different morphogenesis. No individual feature was discriminatory for all RN-PCC cancers. However, a model based on four features was able to classify 94.5% of tumors as sporadic or HNPCC. The finding of multiple differences between sporadic and familial MSI-H colorectal cancer with respect to both genotype and phenotype is consistent with tumorigenesis through parallel evolutionary pathways and emphasizes the importance of studying the two groups separately.
Resumo:
The significance of low-level DNA microsatellite instability (MSI-L) is not well understood. K-ras mutation is associated with MSI-L colorectal cancer and with the silencing of the DNA repair gene O-6-methylguanine DNA methyltransferase (MGMT) by methylation of its promoter region. MGMT methylation was studied in sporadic colorectal cancers stratified as DNA microsatellite instability-high (n = 23), MSI-L (n = 44), and microsatellite-stable (n = 23). Methylation-specific PCR was used to detect MGMT-promoter hypermethylation in 3 of 23 (13%) microsatellite instability-high, in 28 of 44 (64%) MSI-L, and in 6 of 23 (26%) microsatellite-stable cancers (P = 0.0001). K-ras was mutated in 20 of 29 (69%) methylated MSI-L cancers and in 2 of 15 (13%) unmethylated MSI-L cancers (P = 0.001), indicating a relationship between MGMT-methylation and mutation of K-ras. Loss of nuclear expression of MGMT was demonstrated immunohistochemically in 23 of 31 (74%) cancers with methylated MGMT and in 10 of 49 (20%) cancers with nonmethylated MGMT (P < 0.0001). Loss of expression of MGMT was also demonstrated in 9 of 31 serrated polyps. Silencing of MGMT may predispose to mutation by overwhelming the DNA mismatch repair system and occurs with greatest frequency in MSI-L colorectal cancers.
Resumo:
Sporadic colorectal cancer (CRC) characterized by high-level DNA microsatellite instability (MSI-H) has a favorable prognosis. The reason for this MSI-H survival advantage is not known. The aim of this study was to correlate proliferation, apoptosis, and prognosis in CRC stratified by MSI status. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody in a selected series of 100 sporadic colorectal cancers classified according to the level of MSI as 31 MSI-H, 29 MSI-Low (MSI-L), and 40 microsatellite stable (MISS). The Ki-67 index was significantly higher in MSI-H cancers (P < 0.0001) in which the PI was 90.1 1.2% (mean +/- SE) compared with 69.5 +/- 3.1 % and 69.5 +/- 2.3 % in MSI-L and MSS subgroups, respectively. There was a positive linear correlation between the apoptotic index (AI) and PI (r = 0.51; P < 0.001), with MSI-H cancers demonstrating an increased AI:PI ratio indicative of a lower index of cell production. A high PI showed a trend toward predicting improved survival within MSI-H cancers (P = 0.09) but did not predict survival in MSI-L or MSS cancers. The Al was not associated with survival in any MSI subgroup. In conclusion, this is the first study to show that sporadic MSI-H cancers are characterized by a higher AL:PI ratio and increased proliferative activity compared with MSI-L and MSS cancers, and that an elevated PI may confer a survival advantage within the MSI-H subset.
Resumo:
Molecular events in early colorectal cancers (CRCs) have not been well elucidated because of the low incidence of early CRCs in clinical practice. Therefore, we studied 104 sporadic early CRCs with invasion limited to submucosa compared with 116 advanced CRCs. Loss of heterozygosity as well as microsatellite instability (MSI) status was examined. A significantly high frequency of low-level MSI (MSI-L) phenotype was detected in early CRCs (51.0%) compared with advanced CRCs (25.9%; P = 0.0001). In early and advanced CRCs, samples with MSI-L phenotype differed from microsatellite stable (MSS) phenotype with respect to loss of heterozygosity at 1p32 and 8p12-22. MSI-L is a frequent genetic event in early CRCs and may be a novel pathway in colorectal carcinogenesis distinct from both MSI-H and MSS.
Resumo:
Background-The presence of high level DNA microsatellite instability (MSI-H) in colorectal cancer is associated with an improved prognosis, as is the presence of tumour infiltrating lymphocytes (TILs). It is not clear if TILs contribute directly to the survival advantage associated with MSI-H cancers through activation of an antitumour immune response. Aims-To correlate TIL and apoptosis rates in colorectal cancer stratified by MSI status. Methods-The distribution of TILs was characterised and quantified in a selected series of 102 sporadic colorectal cancers classified according to levels of MSI as 32 MSI-H, 30 MSI-low (MSI-L), and 40 microsatellite stable (MSS). Archival blocks were immunostained using the T cell markers CD3 and CD8, and the B cell marker CD20. Apoptosis of malignant epithelial cells was quantified by immunohistochemistry with the M30 CytoDEATH antibody. Results-Positive staining with anti-CD3 and negative staining with anti-CD20 identified virtually all TILs as T cells. The majority of CD3(+) TILs (>75%) also stained with anti-CDS. TILs were most abundant in MSI-H colorectal cancers in which 23/32 (72%) scored as TIL positive. Only 5/40 (12.5%) MSS tumours and 9/30 (30%) MSI-L cancers were TIL positive (p
Resumo:
The author discusses the recommendation by the NH and MRC for faecal occult blood testing in bowel cancer screening.
Resumo:
DCC (deleted in colon cancer), Neogenin and UNC-5 are all members of the immunoglobulin superfamily of transmembrane receptors which are believed to play a role in axon guidance by binding to their ligands, the Netrin/UNC-40 family of secreted molecules (Cell. Mol. Life Sci. 56 (1999) 62; Curr. Opin. Genet. Dev. 7 (1997) 87). Although zebrafish homologues of the Netrin family of secreted molecules have been reported, to date there has been no published description of zebrafish DCC homologues (Mol. Cell. Neurosci. 9 (1997) 293., Mol. Cell. Neurosci. I I ( 1998) 194; Mech. Dev. 62 (1997) 147). We report here the expression pattern of a zebrafish dcc (zdcc) homologue during the initial period of neurogenesis and axon tract formation within the developing central nervous system. Between 12 and 33 h post-fertilisation zdcc is expressed in a dynamic spatiotemporal pattern in all major subdivisions of the central nervous system. Double-labelling for zdcc and the post-mitotic neuronal marker HNK-1 revealed that subpopulations of neurons within the first nuclei of the zebrafish brain express zdcc. These results support our previous observation that patterning of neuronal clusters in the zebrafish brain occurs early in development (Dev. Bioi, 229 (2001) 271). (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.