65 resultados para nonmajor histocompatibility complex gene

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-I gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-IA. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2-activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The class II major histocompatibility complex molecule I-A(g7) is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its beta chain. To identify the requirements for peptide binding to I-A(g7) and thereby potentially pathogenic T cell epitopes, we analyzed a known I-A(g7)-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9-27. NH2- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R21 and the minimum sequence for direct binding to purified I-A(g7) M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimally, p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-A(g7) deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-A(g7)-restricted T cell epitopes or eluted from I-A(g7). Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The outcome of a virus infection is strongly influenced by interactions between host immune defences and virus 'anti-defence' mechanisms. For many viruses, their continued survival depends on, the speed of their attach: their capacity to replicate and transmit to uninfected hosts prior to their elimination by an effective immune response. In contrast, the success of persistent viruses lies in their capacity for immunological subterfuge: the evasion of host defence mechanisms by either mutation (covered elsewhere in this issue, by Gould and Bangham, pp. 321-328) or interference with the action of host cellular proteins that are important components of the immune response. This review will focus on the strategies employed by persistent viruses against two formidable host defences against virus infection: the CD8+ cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a parr in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herpesviruses, such as murine and human cytomegalovirus (MCMV and HCMV), can establish a persistent infection within the host and have diverse mechanisms as protection from host immune defences'. Several herpesvirus genes that are homologous to host immune modulators have been identified, and are implicated in viral evasion of the host immune response(2,3). The discovery of a viral major histocompatibility complex (MHC) class I homologue, encoded by HCMV(4), led to speculation that it might function as an immune modulator and disrupt presentation of peptides by MHC class I to cytotoxic T cells(5). However, there is no evidence concerning the biological significance of this gene during viral infection. Recent analysis of the MCMV genome has also demonstrated the presence of a MHC class I homologue(6). Here we show that a recombinant MCMV,in which. the gene encoding the class I homologue has been disrupted, has severely restricted replication during the acute stage of infection compared with wild-type MCMV, We demonstrate by in vivo depletion studies that natural killer (NK) cells are responsible for the attenuated phenotype of the mutant. Thus the viral MHC dass I homologue contributes to immune evasion through interference with NK cell-mediated clearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) is uniquely able to up-regulate the expression of the peptide transporters (referred to as TAP-1 and TAP-2) and major histocompatibility complex (MHC) class I in Burkitt's lymphoma (BL) cell lines. This up-regulation is often accompanied by a restoration of antigen-presenting function as measured by the ability of these cells to present endogenously expressed viral antigen to cytotoxic T lymphocytes. Here we show that the expression of LMP1 resulted in up-regulation and nuclear translocation of RelB that were coincident with increased expression of MHC class I in BL cells. Deletion of the C-terminal activator regions (CTARs) of LMP1 significantly impaired the abilities of LMP1 to translocate RelB into the nucleus and to up-regulate the expression of antigen-processing genes. Further analysis with single-point mutations within the CTARs confirmed that the residues critical for NF-kappaB activation directly contribute to antigen-processing function regulation in BL cells. This LMP1-mediated effect was blocked following expression of either dominant negative IkappaBalpha S32/36A, an NF-kappaB inhibitor, or antisense RelB. These observations indicate that upregulation of antigen-presenting function in B cells mediated by LMP1 is signaled through the NF-kappaB subunit RelB. The data provide a mechanism by which LMP1 modulates immunogenicity of Epstein-Barr virus-infected normal and malignant cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up-regulation of receptor-ligand pairs during interaction of an MHC-presented epitope on dendritic cells (DCs) with cognate TCR may amplify, sustain, and drive diversity in the ensuing T cell immune response. Members of the TNF ligand superfamily and the TNFR superfamily contribute to this costimulatory molecule signaling. In this study, we used replication deficient adenoviruses to introduce a model tumor-associated Ag (the E7 oncoprotein of human papillomavirus 16) and the T cell costimulatory molecule 4-IBBL into murine DCs, and monitored the ability of these recombinant DO to elicit E7-directed T cell responses following immunization. Splenocytes from mice immunized with DCs expressing E7 alone elicited E7-directed effector and memory CTL responses. Coexpression of 4-1BBL in these E7-expressing DO increased effector and memory CTL responses when they were used for immunization. 4-1BBL expression up-regulated CD80 and CD86 second signaling molecules in DO. We also report an additive effect of 4-IBBL and receptor activator of NF-kappaB/receptor activator of NF-kappaB ligand coexpression in E7-transduced DC inummogens on E7-directed effector and memory CTL responses and on MHC class II and CD80/86 expression in DCs. Additionally, expression of 4-1BBL in E7-transduced DCs reduced nonspecific T cell activation characteristic of adenovirus vector-associated immunization. The results have generic implications for improved or tumor Ag-expressing DC vaccines by incorporation of exogenous 4-1BBL. There are also specific implications for an improved DC-based vaccine for human papillomavirus 16-associated cervical carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A functional immune system requires a tight control over major histocompatibility complex (MHC) gene transcription, as the abnormal MHC expression patterns of severe immunodeficiency and autoimmune diseases demonstrate. Although the regulation of MHC expression has been well documented in humans and mice, little is known in other species. In this study, we detail the level of polymorphism in wolf and dog MHC gene promoters. The promoter regions of the DRB, DQA and DQB locus were sequenced in 90 wolves and 90 dogs. The level of polymorphism was high in the DQB promoters, with variation found within functionally relevant regions, including binding sites for transcription factors. Clear associations between DQB promoters and exon 2 alleles were noted in wolves, indicating strong linkage disequilibrium in this region. Low levels of polymorphism were found within the DRB and DQA promoter regions. However, a variable site was identified within the T box, a TNF-alpha response element, of the DQA promoter. Furthermore, we identified a previously unrecognised 18-base-pair deletion within exon 1 of the DQB locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human metapneumovirus (hMPV) has emerged as an important human respiratory pathogen causing upper and lower respiratory tract infections in young children and older adults. In addition, hMPV infection is associated with asthma exacerbation in young children. Recent epidemiological evidence indicates that hMPV may cocircullate with human respiratory syncytial virus (hRSV) and mediate clinical disease similar to that seen with hRSV. Therefore, a vaccine for hMPV is highly desirable. In the present study, we used predictive bioinformatics, peptide immunization, and functional T-cell assays to define hMPV cytotoxic T-lymphocyte (CTL) epitopes recognized by mouse T cells restricted through several major histocompatibility complex class I alleles, including HILA-A*0201. We demonstrate that peptide immunization with hMPV CTL epitopes reduces viral load and immunopathollogy in the lungs of hMPV-challenged mice and enhances the expression of Th1-type cytokines (gamma interferon and interleukin-12 [IL-12]) in lungs and regional lymph nodes. In addition, we show that levels of Th2-type cytolkines (IL-10 and IL-4) are significantly lower in hMPV CTL epitope-vaccinated mice challenged with hMPV. These results demonstrate for the first time the efficacy of an hMPV CTL epitope vaccine in the control of hMPV infection in a murine model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell receptors are among the most specific biological structures found in nature and are therefore excellent candidates for the molecular targeting of antigen. It is becoming increasingly apparent that common sets of T cell receptors are frequently used in humans to combat pathogen and cancer derived threats. Given that many of these conserved T cell receptors have high affinity for their target ligands, there is potential to amass virtual banks of “off-the-shelf” receptors for use in a wide range of immunotherapeutic strategies. Additionally, such T cell receptors could become basic blueprints for artificial enhancement through mutagenesis, thereby creating an even better 3-dimensional fit for their cognate targets. Indeed, preliminary approaches using both “natural” and “supernatural” T cell receptors have shown promise in treating autoimmunity and malignancy. This review will discuss these studies and other approaches through which T cell receptors can be exploited in immunodiagnostics, pathogen control and gene therapy.