129 resultados para nitrogen oxide reduction
em University of Queensland eSpace - Australia
Resumo:
This paper presents a comprehensive and critical review of the mechanisms and kinetics of NO and N2O reduction reaction with coal chars under fluidised-bed combustion conditions (FBC). The heterogeneous reactions of NO and N2O with char/carbon surface have been well recognised as the most important processes in reducing both NOx and N2O in situ FBC. Compared to NO-carbon reactions in FBC, the reactions of N2O with chars have been relatively less understood and studied. Beginning with the overall reaction schemes for both NO and N2O reduction, the paper extensively discusses the reaction mechanisms including the effects of active surface sites. Generally, NO- and N2O-carbon reactions follow a series of step reactions. However, questions remain concerning the role of adsorbed phases of NO and N2O, and the behaviour of different surface sites. Important kinetics factors such as the rate expressions, kinetics parameters as well as the effects of surface area and pore structure are discussed in detail. The main factors influencing the reduction of NO and N2O in FBC conditions are the chemical and physical properties of chars, and the operating parameters of FBC such as temperature, presence of CO, O-2 and pressure. It is shown that under similar conditions, N2O is more readily reduced on the char surface than NO. Temperature was found to be a very important parameter in both NO and N2O reduction. It is generally agreed that both NO- and N2O-carbon reactions follow first-order reaction kinetics with respect to the NO and N2O concentrations. The kinetic parameters for NO and N2O reduction largely depend on the pore structure of chars. The correlation between the char surface area and the reactivities of NO/N2O-char reactions is considered to be of great importance to the determination of the reaction kinetics. The rate of NO reduction by chars is strongly enhanced by the presence of CO and O-2, but these species may not have significant effects on the rate of N2O reduction. However, the presence of these gases in FBC presents difficulties in the study of kinetics since CO cannot be easily eliminated from the carbon surface. In N2O reduction reactions, ash in chars is found to have significant catalytic effects, which must be accounted for in the kinetic models and data evaluation. (C) 1997 Elsevier Science Ltd.
Resumo:
A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9].
Resumo:
The influences of HCl, HNO3 and HF treatments of carbon on N2O and NO reduction with 20 wt% Cu-loaded activated carbon were studied. The order of activity in both N2O and NO is as follows: Cu20/AC-HNO3>Cu20/AC>Cu20/AC-HF>Cu20/AC-HCl. The same sequence was also observed for the amount of CO2 evolved during TPD experiments of supports acid for the catalyst dispersion. On the other hand, N2O exhibited a higher reaction rate than NO and a higher sensitivity to acid treatments, and the presence of gas-phase O-2 had opposite effects in N2O and NO reduction. The key role of carbon surface chemistry is examined to rationalize these findings and the relevant mechanistic and practical implications are discussed. The effects of oxygen surface groups on the pore structure of supports and catalysts are also analyzed, (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Previous experimental studies showed that the presence of O-2 greatly enhances NO-carbon reaction while it depresses N2O-carbon reaction on carbon surfaces. A popular explanation for the rate increase is that the addition of O-2 results in a large number of reactive carbon-oxygen complexes, and decomposition of these complexes produces many more active sites. The explanation for the latter is that excess O-2 simply blocks the active sites, thus reducing the rate of N2O-carbon reaction. The contradiction is that O-2 can also occupy active sites in NO-carbon reaction and produce active sites in N2O-carbon reduction. By using ab initio calculation, we find that the opposite roles of O-2 are caused by the different manners of N2O and NO adsorption on the carbon surface. In the presence of excess O-2, most Of the active sites are occupied by oxygen groups. In the competition for the remaining active sites, NO is more likely to chemisorb in the form of NO2 and NO chemisorption is mon thermodynamically favorable than O-2 chemisorption. By contrast, the presence of excess O-2 makes N2O chemisorption much less thermally stable either on the consecutive edge sites or edge sites isolated by semiquinone oxygen. A detailed analysis and discussion of the reaction mechanism of N-2 formation from NO- and N2O-carbon reaction in the presence of O-2 is presented in this paper.
Resumo:
Alloys of Al, Al-0.15Mg, and Al-12Sn made using air atomized aluminum powder and pressed to green densities of 75 to 98 pet were sintered under argon or nitrogen. Sintering in argon is only effective at high green densities when magnesium is present. In contrast, highly porous aluminum can be sintered in nitrogen without the need for magnesium. The oxygen concentration in the gas is reduced by the aluminum through a self-gettering process. The outer layers of the porous powder compact serve as a getter for the inner layers such that the oxygen partial pressure is reduced deep within the pore network. Aluminum nitride then forms, either by direct reaction with the metal or by reduction of the oxide layer, and sintering follows.
Resumo:
A number of N- and C-based diastereomeric copper(II) complexes of the pendant-arm macrocyclic hexaamines trans- and cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L-1 and L-2) have been isolated and characterised. The crystal structures of the complexes RRSS-[CuL1(OH2)(2)][ClO4](2), SSRR-[Cu(H2L1)(OClO3)(2)]-[ClO4](2) . 2H(2)O RSRS-[CuL1(OClO3)]ClO4, RSRS-[CuL2(OClO3)]ClO4 and RRSS-[Cu(H2L2)(OClO3)(2)][ClO4](2) have been determined. Some unusual structural and spectroscopic variations are found across this series of diastereomers. The protonation constants of the pendant primary amines are dependent on the relative dispositions of the adjacent macrocyclic secondary amine H atoms, which is indicative of intramolecular hydrogen-bonding interactions.
Resumo:
A study of spin-orbit mixing and nephelauxetic effects in the electronic spectra of nickel(II)-encapsulating complexes involving mixed nitrogen and sulfur donors is reported. As the number of sulfur donors is systematically varied through the series [Ni(N6-xSx)](2+) (x = 0-6), the spin-forbidden (3)A(2)g --> E-1(g) and (3)A(2g) --> (1)A(1g) transitions undergo a considerable reduction in energy whereas the spin-allowed transitions are relatively unchanged. The [Ni(diAMN(6)sar)](2+) and [Ni(AMN(5)Ssar)](2+) complexes exhibit an unusual band shape for the (3)A(2g) --> T-3(2g) transition which is shown to arise from spin-orbit mixing of the E spin-orbit levels associated with the E-1(g) and T-3(2g) states. A significant differential nephelauxetic effect also arises from the covalency differences between the t(2g) and e(g) orbitals with the result that no single set of Racah B and C interelectron repulsion parameters adequately fit the observed spectra. Using a differential covalency ligand-field model, the spectral transitions are successfully reproduced with three independent variables corresponding to 10Dq and the covalency parameters f(t) and f(e), associated with the t(2g) and e(g) orbitals, respectively. The small decrease in f(t) from unity is largely attributed to central-field covalency effects whereas the dramatic reduction in f(e) with increasing number of sulfur donors is a direct consequence of the increased metal-ligand covalency associated with the sulfur donors. Covalency differences between the t(2g) and e(g) orbitals also result in larger 10Dq values than those obtained simply from the energy of the (3)A(2g) --> T-3(2g) spin-allowed transition.
Resumo:
I Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO; NO gas solution) and nitroxyl ion (NO-; from Angeli's salt). 2 The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 muM), concentration-dependently inhibited responses to all agents. 10 muM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. 3 The NO scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-indazoline-1-oxyl-3-oxide; 100 muM) and hydroxocobalamin (100 muM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. 4 The NO- inhibitor, L-cysteine (3 mm), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. 5 The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO and NO-. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO.
Resumo:
A marine model of oral candidiasis was used to show that nitric oxide (NO) is involved in host resistance to infection with Candida albicans in infection-'resistant' BALB/c and infection-'prone' DBA/2 mice. Following infection, increased NO production was detected in saliva. Postinfection samples of saliva inhibited the growth of yeast in vitro. Treatment with N-G-monomethyl-L-arginine (MMLA), an inhibitor of NO synthesis, led to reduced NO production, which correlated with an increase in C. albicans growth. Reduction in NO production following MMLA treatment correlated with an abrogation of interleukin-4 (IL-4), but not interferon-gamma (IFN-gamma), mRNA gene expression in regional lymph node cells. Down-regulation of IL-4 production was accompanied with an increase in IFN-gamma production in infection-'prone' DBA/2 mice. There was a functional relationship between IL-4 and NO production in that mice treated with anti-IL-4 monoclonal antibody showed a marked inhibition of NO production in saliva and in culture of cervical lymph node cells stimulated with C albicans antigen. The results Support previous conclusions that IL-4 is associated with resistance to oral candidiasis and suggest that NO is involved in controlling colonization of the oral mucosal surface with C albicans.
Resumo:
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
An investigation of the role of oxygen in the nitrous oxide/carbon reaction was carried out on various carbon samples (both graphitic and nongraphitic) over a range of temperatures and partial pressures. Previous work reported that oxygen strongly inhibited the nitrous oxide/carbon reaction. Large ratios of O-2/N2O were used in all previous work. In this work, the O-2/N2O ratio was kept below 1, and we found that oxygen did not inhibit the rate of the C + N2O reaction. Instead, the rate of the reaction in the presence of oxygen was essentially that predicted by the two independent reactions, nitrous oxide/carbon and oxygen/carbon, occurring simultaneously. A simple theoretical explanation is given for the observations, both past and present, on the basis of competitive chemisorption of nitrous oxide and oxygen on active sites.
Resumo:
The ABA-deficient wilty pea (Pisum sativum L.) and its wild-type (WT) were grown at two levels of nitrogen supply (0.5 and 5.0 mM) for 5-6 weeks from sowing, to determine whether leaf ABA status altered the leaf growth response to N deprivation. Plants were grown at high relative humidity to prevent wilting of the wilty peas. Irrespective of N supply, expanding wilty leaflets had ca 50% less ABA than WT leaflets but similar ethylene evolution rates. Fully expanded wilty leaflets had lower relative water contents (RWC) and were 10-60% smaller in area (according to the node of measurement) than WT leaflets. However, there were no genotypic differences in plant relative leaf expansion rate (RLER). Growth of both genotypes at 0.5 mM N increased the RWC of fully expanded leaflets, but did not alter ethylene evolution or ABA concentration of expanding leaflets. Plants grown at 0.5 mM N showed a 20-30% reduction in RLER, which was similar in magnitude in both wilty and WT peas. Thus, leaf ABA status did not alter the leaf growth response to N deprivation.
Resumo:
In order to meet increasingly stringent European discharge standards, new applications and control strategies for the sustainable removal of ammonia from wastewater have to beimplemented. In this paper we discuss anitrogen removal system based on the processesof partial nitrification and anoxic ammoniaoxidation (anammox). The anammox process offers great opportunities to remove ammonia in fully autotrophic systems with biomass retention. No organic carbon is needed in such nitrogenremoval system, since ammonia is used a selectron donor for nitrite reduction. The nitrite can be produced from ammonia in oxygen-limited biofilm systems or in continuous processes without biomass retention. For successful implementation of the combined processes, accurate biosensors for measuring ammonia and nitrite concentrations, insight inthe complex microbial communities involved, and new control strategies have to be developed and evaluated.