5 resultados para network connectivity

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical. gases (Ar, N-2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work 1,2 using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new diffusion and flow model is presented to describe the behavior of hydrocarbon vapors in activated carbon. The micro/mesopore size distribution (PSD) is obtained according to Do's method which consists of two sequential processes of pore layering and pore filling. This model uses the micro/meso PSD obtained from each adsorbate equilibrium isotherm, which reflects the dynamics behavior of adsorbing molecules through the solid. The initial rise in total permeability is mainly attributed to adsorbed-phase diffusion (that is, surface diffusion), whereas the decrease over reduced pressure of about 0.9 is attributed to the reduction of pore space available for gas phase diffusion and flow. A functional form of surface diffusivity is proposed and validated with experimental data. This model predicts well the permeability of condensable hydrocarbon vapors in activated carbon. (C) 2005 American Institute of Chemical Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes an architecture for pervasive computing which utilizes context information to provide adaptations based on vertical handovers (handovers between heterogeneous networks) while supporting application Quality of Service (QoS). The future of mobile computing will see an increase in ubiquitous network connectivity which allows users to roam freely between heterogeneous networks. One of the requirements for pervasive computing is to adapt computing applications or their environment if current applications can no longer be provided with the requested QoS. One of possible adaptations is a vertical handover to a different network. Vertical handover operations include changing network interfaces on a single device or changes between different devices. Such handovers should be performed with minimal user distraction and minimal violation of communication QoS for user applications. The solution utilises context information regarding user devices, user location, application requirements, and network environment. The paper shows how vertical handover adaptations are incorporated into the whole infrastructure of a pervasive system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Australia more than 300 vertebrates, including 43 insectivorous bat species, depend on hollows in habitat trees for shelter, with many species using a network of multiple trees as roosts, We used roost-switching data on white-striped freetail bats (Tadarida australis; Microchiroptera: Molossidae) to construct a network representation of day roosts in suburban Brisbane, Australia. Bats were caught from a communal roost tree with a roosting group of several hundred individuals and released with transmitters. Each roost used by the bats represented a node in the network, and the movements of bats between roosts formed the links between nodes. Despite differences in gender and reproductive stages, the bats exhibited the same behavior throughout three radiotelemetry periods and over 500 bat days of radio tracking: each roosted in separate roosts, switched roosts very infrequently, and associated with other bats only at the communal roost This network resembled a scale-free network in which the distribution of the number of links from each roost followed a power law. Despite being spread over a large geographic area (> 200 km(2)), each roost was connected to others by less than three links. One roost (the hub or communal roost) defined the architecture of the network because it had the most links. That the network showed scale-free properties has profound implications for the management of the habitat trees of this roosting group. Scale-free networks provide high tolerance against stochastic events such as random roost removals but are susceptible to the selective removal of hub nodes. Network analysis is a useful tool for understanding the structural organization of habitat tree usage and allows the informed judgment of the relative importance of individual trees and hence the derivation of appropriate management decisions, Conservation planners and managers should emphasize the differential importance of habitat trees and think of them as being analogous to vital service centers in human societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As advances in molecular biology continue to reveal additional layers of complexity in gene regulation, computational models need to incorporate additional features to explore the implications of new theories and hypotheses. It has recently been suggested that eukaryotic organisms owe their phenotypic complexity and diversity to the exploitation of small RNAs as signalling molecules. Previous models of genetic systems are, for several reasons, inadequate to investigate this theory. In this study, we present an artificial genome model of genetic regulatory networks based upon previous work by Torsten Reil, and demonstrate how this model generates networks with biologically plausible structural and dynamic properties. We also extend the model to explore the implications of incorporating regulation by small RNA molecules in a gene network. We demonstrate how, using these signals, highly connected networks can display dynamics that are more stable than expected given their level of connectivity.