109 resultados para natural spectra
em University of Queensland eSpace - Australia
Resumo:
The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum.
Resumo:
Several unknown, abundant brominated compounds (BCs) were recently detected in the blubber of dolphins and other marine mammals from Queensland (northeast Australia). The BC were interpreted as potential natural products due to the lack of anthropogenic sources for these compounds. This study investigated whether some of the BCs accumulated by diverse marine mammal species are identical with natural BCs previously isolated from sponges (Dysidea sp.) living in the same habitat. Isolates from sponges and mollusks (Asteronotus cespitosus) were compared with the signals detected in the mammals' tissue. Mass spectra and gas chromatography retention times on four different capillary columns of the isolates from sponges and mammals were identical in all respects. This proves that the chemical name of the compound previously labeled BC-2 is 4,6-dibromo-2-(2'-dibromo)phenoxyanisole and that the chemical name of BC-11 is 3,5-dibromo-2-(3',5'-dibromo-2'-methoxy)phenoxyanisole. Using a quantitative reference solution of BC-2, we established that the concentrations of the brominated metabolies found in the marine mammals are frequently >1 mg/kg. The highest concentration (3.8 mg/kg), found in a sample of pygmy sperm whale (Kogia breviceps), indicates that BC-2 is a bioaccumulative, natural organohalogen compound. This is supported by the concentrations of the BCs in our samples being equal to the highest concentrations of anthropogenic BCs in any environmental sample. The quantitative determination of BC-2 in blubber of marine mammals from Africa and the Antarctic suggests that BC-2 is wide-spread. These results are direct proof that marine biota can produce persistent organic chemicals that accumulate to substantial concentrations in higher trophic organisms.
Resumo:
Inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods and have been implicated in the expression of parthenogenesis, feminization and cytoplasmic incompatibility phenomena in their respective hosts. Here we use purified Wolbachia from the Asian tiger mosquito, Aedes albopictus, to replace the natural infection of Drosophila simulans by means of embryonic microinjection techniques. The transferred Wolbachia infection behaves like a natural Drosophila infection with regard to its inheritance, cytoskeleton interactions and ability to induce incompatibility when crossed with uninfected flies. The transinfected flies are bidirectionally incompatible with all other naturally infected strains of Drosophila simulans, however, and as such represent a unique crossing type. The successful transfer of this symbiont between distantly related hosts suggests that it may be possible to introduce this agent experimentally into arthropod species of medical and agricultural importance in order to manipulate natural populations genetically.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Fast Structure-Based Assignment of 15N HSQC Spectra of Selectively 15N-Labeled Paramagnetic Proteins
Resumo:
A novel strategy for fast NMR resonance assignment of N-15 HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively N-15-labeled samples. Comparison of sensitive undecoupled N-15 HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia Coll DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
We show that a two-level atom interacting with an extremely weak squeezed vacuum can display resonance fluorescence spectra that are qualitatively different to those that can be obtained using fields with a classical analogue. We consider first the free space situation with monochromatic excitation, and then discuss a bichromatically driven two-level atom in a cavity as a practical scenario for experimentally detecting the anomalous features predicted. We show that in the bad cavity limit, the anomalous spectral features appear for a weak squeezed vacuum and large frequency differences of the bichromatic field, conditions which are easily accessible in laboratories. The advantage of bichromatic, as opposed to monochromatic, excitation is that there is no coherent scattering at line centre which could obscure the observations. A scaling law is derived, N similar to Omega(4) which relates the squeezed photon number to the Rabi frequency at which the anomalous features appear. (C) 1998 Elsevier Science B.V.
Resumo:
The low temperature electronic spectrum of Cu(II) doped Cs2ZrCl6 is reported. It is found that Cu(II) is incorporated as the square planar copper tetrachloride ion, CuCl42-, which substitutes at the Zr(IV) site in the Cs2ZrCl6 lattice. There is a complete absence of axial coordination. The optical spectrum shows vibronic structure with peak widths as small as 8 cm(-1), far narrower than previously seen for this ion. The energy of the observed transitions and the Franck-Condon intensity pattern suggest that there is a substantial relaxation of the host lattice about the impurity ion. The relative intensity of the magnetic dipole component of the bands appears to be considerably greater than for pure copper(II) compounds containing the CuCl42- ion. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The outcome of a virus infection is strongly influenced by interactions between host immune defences and virus 'anti-defence' mechanisms. For many viruses, their continued survival depends on, the speed of their attach: their capacity to replicate and transmit to uninfected hosts prior to their elimination by an effective immune response. In contrast, the success of persistent viruses lies in their capacity for immunological subterfuge: the evasion of host defence mechanisms by either mutation (covered elsewhere in this issue, by Gould and Bangham, pp. 321-328) or interference with the action of host cellular proteins that are important components of the immune response. This review will focus on the strategies employed by persistent viruses against two formidable host defences against virus infection: the CD8+ cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses.
Resumo:
Temperature was monitored in three natural nests, and oxygen and carbon dioxide partial pressure monitored in one natural nest of the broad-shelled river turtle, Chelodina expansa, throughout incubation. Nest temperature decreased after nest construction in autumn, remained low during winter and gradually increased in spring to a maximum in summer. In a nest where temperature was recorded every hour, temperature typically fluctuated through a 2 degrees C cycle on a daily basis throughout the entire incubation period, and the nest always heated faster than it cooled. Oxygen and carbon dioxide partial pressures in this nest were similar to soil oxygen and carbon dioxide partial pressures for the first 5 months of incubation, but nest respiratory gas tensions deviated from the surrounding soil over the last three months of incubation. Nest respiratory gas tensions were not greatly different from those in the atmosphere above the ground except after periods of rain. After heavy rain during the last 3 months of incubation the nest became moderately hypoxic (P-O2 similar to 100 Torr) and hypercapnic (P-CO2 similar to 50 Torr) for several successive days. These short periods of hypoxia and hypercapnia were not lethal.
Resumo:
The resonance fluorescence of a two-level atom driven by a coherent laser field and damped by a finite bandwidth squeezed vacuum is analysed. We extend the Yeoman and Barnett technique to a non-zero detuning of the driving field from the atomic resonance and discuss the role of squeezing bandwidth and the detuning in the level shifts, widths and intensities of the spectral lines. The approach is valid for arbitrary values of the Rabi frequency and detuning but for the squeezing bandwidths larger than the natural linewidth in order to satisfy the Markoff approximation. The narrowing of the spectral lines is interpreted in terms of the quadrature-noise spectrum. We find that, depending on the Rabi frequency, detuning and the squeezing phase, different factors contribute to the line narrowing. For a strong resonant driving field there is no squeezing in the emitted field and the fluorescence spectrum exactly reveals the noise spectrum. In this case the narrowing of the spectral lines arises from the noise reduction in the input squeezed vacuum. For a weak or detuned driving field the fluorescence exhibits a large squeezing and, as a consequence, the spectral lines have narrowed linewidths. Moreover, the fluorescence spectrum can be asymmetric about the central frequency despite the symmetrical distribution of the noise. The asymmetry arises from the absorption of photons by the squeezed vacuum which reduces the spontaneous emission. For an appropriate choice of the detuning some of the spectral lines can vanish despite that there is no population trapping. Again this process can be interpreted as arising from the absorption of photons by the squeezed vacuum. When the absorption is large it may compensate the spontaneous emission resulting in the vanishing of the fluorescence lines.
Resumo:
There is a growing body of data on avian eyes, including measurements of visual pigment and oil droplet spectral absorption, and of receptor densities and their distributions across the retina. These data are sufficient to predict psychophysical colour discrimination thresholds for light-adapted eyes, and hence provide a basis for relating eye design to visual needs. We examine the advantages of coloured oil droplets, UV vision and tetrachromacy for discriminating a diverse set of avian plumage spectra under natural illumination. Discriminability is enhanced both by tetrachromacy and coloured oil droplets. Oil droplets may also improve colour constancy. Comparison of the performance of a pigeon's eye, where the shortest wavelength receptor peak is at 410 nm, with that of the passerine Leiothrix, where the ultraviolet-sensitive peak is at 365 nm, generally shows a small advantage to the latter, but this advantage depends critically on the noise level in the sensitivity mechanism and on the set of spectra being viewed.