21 resultados para natural populations

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The neotropical pioneer species Vochysia ferruginea is locally important for timber and is being increasingly exploited. The sustainable utilisation of this species would benefit from an understanding of the level and partitioning of genetic diversity within remnant and secondary regrowth populations. We used data from total genome (amplified fragment length polymorphism, AFLP) and chloroplast genome markers to assay diversity levels within seven Costa Rican populations. Significant chloroplast differentiation between Atlantic and Pacific watersheds was observed, suggesting divergent historical origins for these populations. Contemporary gene flow, though extensive, is geographically constrained and a clear pattern of isolation by distance was detectable when an inter-population distance representing gene flow around the central Costa Rican mountain range was used. Overall population differentiation was low (F-ST = 0.15) and within-population diversity high, though variable (H-s=0.16-0.32), which fits with the overall pattern of population genetic structure expected for a widespread, outcrossed tropical tree. However genetic diversity was significantly lower and differentiation higher for recently colonised and disturbed populations compared to that at more established sites. Such a pattern seems indicative of a pioneer species undergoing repeated cycles of colonisation and succession.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various factors affecting N-2 fixation of a cultured strain of Trichodesmium sp. (GBRTRLI101) from the Great Barrier Reef Lagoon were investigated. The diurnal pattern of N2 fixation demonstrated that it was primarily light-induced although fixation continued to occur for at least 1 h in the dark in samples that had been actively fixing N-2. N-2 fixation was dependent on the light intensity and stimulated more by white light when compared with blue, green, yellow and red light whereas rates of N-2 fixation decreased most under red light. Inorganic phosphorous concentrations in the lower range of treatments up to 1.2 muM significantly stimulated N-2 fixation and further additions promoted little or no increase in N-2 fixation. Organic phosphorous (Na-glycerophosphate) also stimulated N-2 fixation rates. Added combined nitrogen (NH4+, NO3-, urea) of 10 muM did not inhibit N-2 fixation in short-term studies (first generation), however it was depressed in the long-term studies (fifth generation). (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53,71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (g(max)), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with g(max). In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stabilizing selection is a fundamental concept in evolutionary biology. In the presence of a single intermediate optimum phenotype (fitness peak) on the fitness surface, stabilizing selection should cause the population to evolve toward such a peak. This prediction has seldom been tested, particularly for suites of correlated traits. The lack of tests for an evolutionary match between population means and adaptive peaks may be due, at least in part, to problems associated with empirically detecting multivariate stabilizing selection and with testing whether population means are at the peak of multivariate fitness surfaces. Here we show how canonical analysis of the fitness surface, combined with the estimation of confidence regions for stationary points on quadratic response surfaces, may be used to define multivariate stabilizing selection on a suite of traits and to establish whether natural populations reside on the multivariate peak. We manufactured artificial advertisement calls of the male cricket Teleogryllus commodus and played them back to females in laboratory phonotaxis trials to estimate the linear and nonlinear sexual selection that female phonotactic choice imposes on male call structure. Significant nonlinear selection on the major axes of the fitness surface was convex in nature and displayed an intermediate optimum, indicating multivariate stabilizing selection. The mean phenotypes of four independent samples of males, from the same population as the females used in phonotaxis trials, were within the 95% confidence region for the fitness peak. These experiments indicate that stabilizing sexual selection may play an important role in the evolution of male call properties in natural populations of T. commodus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the United States and several other countries., the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including. a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to. model disease explicitly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the decisions made by hatchery managers around the world is what degree of shading and nest depth are required to maximise the production of high-quality hatchlings at optimal sex ratios. The primary objectives of this study were to determine the effects of (1) hatchery shading and nest depth on nest temperatures and emergence lag, and (2) nest temperatures and nest depth on hatchling sex ratio and quality. In 2001, 26 Chelonia mydas clutches from Ma'Daerah beach, Terengganu, Malaysia, were relocated alternatively at depths of 50 cm and 75 cm into a 70%-shaded and a 100%-shaded hatchery. Data loggers were placed into the centre of each relocated clutch to record the temperature every hour over the course of incubation. When the hatchlings emerged, a sample of the clutch was run, measured and weighed and a separate sample was examined histologically for sex characteristics. Nest temperatures ranged between 28 degrees C and 30 degrees C and generally showed increases over the second half of incubation due to metabolic heating of the clutch. There was no significant correlation found between nest temperature and any of the hatchling parameters measured. Hatchlings from 75-cm-deep nests had a longer emergence lag (46.4 (+/- 10.2) h) than hatchlings from 50-cm-deep nests. Hatch and emergence success were similar to those of natural populations and hatchling sex ratios were male dominant, with an average of 72% males. There was a poor correlation between mean middle-third incubation temperatures and sex ratio. Hatchlings from 75-cm-deep nests had similar running speeds but lower condition index than their conspecifics from 50-cm-deep nests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compared inorganic phosphate (P-i) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate-limited cultures had up to six times higher maximum P-i uptake rates than P-replete cultures in both strains. For strain GBRTRLI101, cell-specific P-i uptake rates were nearly twice as high, due to larger cell size, but P-specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 muM for P-i uptake and 0.1 and 0.2 muM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing P-i up to 1.0 muM. The C:P ratios were 340-390 and N:P ratios were 40-45 for both strains under severely P-limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 muM P-i. The North Atlantic strain IMS101 is better adapted to growing on P-i at low concentrations than is GBRTRLI101 from the more P-i-enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) P-i concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal's physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F-ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, there has been a dramatic increase in the number of ecotoxicological studies examining the effects of toxicants on fertilization success in marine broadcast spawners and it appears that this life-history stage is one of the most vulnerable to toxicants. Most of the studies examining this issue use single sperm concentrations in their assays. Here, I discuss recent advances in fertilization ecology that suggest this technique has some severe limitations resulting in unreliable estimations of the size and direction of toxicant effects. I present an alternative assay technique and two metrics (F-max and [Sperm](max)) that will reliably estimate the size of a toxicant's effect on fertilization success. This technique has the added advantage of making comparisons among species and studies easier without an impractical increase in effort. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative genetics provides a powerful framework for studying phenotypic evolution and the evolution of adaptive genetic variation. Central to the approach is G, the matrix of additive genetic variances and covariances. G summarizes the genetic basis of the traits and can be used to predict the phenotypic response to multivariate selection or to drift. Recent analytical and computational advances have improved both the power and the accessibility of the necessary multivariate statistics. It is now possible to study the relationships between G and other evolutionary parameters, such as those describing the mutational input, the shape and orientation of the adaptive landscape, and the phenotypic divergence among populations. At the same time, we are moving towards a greater understanding of how the genetic variation summarized by G evolves. Computer simulations of the evolution of G, innovations in matrix comparison methods, and rapid development of powerful molecular genetic tools have all opened the way for dissecting the interaction between allelic variation and evolutionary process. Here I discuss some current uses of G, problems with the application of these approaches, and identify avenues for future research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro-ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life-table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k-values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.