10 resultados para n-3 LC-PUFA biosynthesis enzymes

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The biosynthetic origins of the dichloroimine group in the stylotellanes A and B 1,2 have been investigated by incorporation of [C-14]-labeled farnesyl isocyanide 7 and farnesyl isothiocyanate 3 into the sponge Stylotella aurantium. (C) 2002 Elsevier Science Ltd. All rights reserled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS) and acetolactate synthase (ALS) are thiamine diphosphate (ThDP)-dependent enzymes that catalyze the decarboxylation of pyruvate to give a cofactor-bound hydroxyethyl group, which is transferred to a second molecule of pyruvate to give 2-acetolactate. AHAS is found in plants, fungi, and bacteria, is involved in the biosynthesis of the branched-chain amino acids, and contains non-catalytic FAD. ALS is found only in some bacteria, is a catabolic enzyme required for the butanediol fermentation, and does not contain FAD. Here we report the 2.3-Angstrom crystal structure of Klebsiella pneumoniae ALS. The overall structure is similar to AHAS except for a groove that accommodates FAD in AHAS, which is filled with amino acid side chains in ALS. The ThDP cofactor has an unusual conformation that is unprecedented among the 26 known three-dimensional structures of nine ThDP-dependent enzymes, including AHAS. This conformation suggests a novel mechanism for ALS. A second structure, at 2.0 Angstrom, is described in which the enzyme is trapped halfway through the catalytic cycle so that it contains the hydroxyethyl intermediate bound to ThDP. The cofactor has a tricyclic structure that has not been observed previously in any ThDP-dependent enzyme, although similar structures are well known for free thiamine. This structure is consistent with our proposed mechanism and probably results from an intramolecular proton transfer within a tricyclic carbanion that is the true reaction intermediate. Modeling of the second molecule of pyruvate into the active site of the enzyme with the bound intermediate is consistent with the stereochemistry and specificity of ALS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyses the formation of 2-acetolactate and 2-aceto-2-hydroxybutyrate as the first step in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. The enzyme is inhibited by a wide range of substituted sulfonylureas and imidazolinones and many of these compounds are used as commercial herbicides. Here, the crystallization and preliminary X-ray diffraction analysis of the catalytic subunit of Arabidopsis thaliana AHAS in complex with the sulfonylurea herbicide chlorimuron ethyl are reported. This is the first report of the structure of any plant protein in complex with a commercial herbicide. Crystals diffract to 3.0 Angstrom resolution, have unit-cell parameters a = b = 179.92, c = 185.82 Angstrom and belong to space group P6(4)22. Preliminary analysis indicates that there is one monomer in the asymmetric unit and that these are arranged as pairs of dimers in the crystal. The dimers form a very open hexagonal lattice, with a high solvent content of 81%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of branched-chain amino acids. The reaction involves an Mg2+-dependent alkyl migration followed by an NADPH-dependent reduction of the 2-keto group. Here, the crystallization of the Escherichia coli enzyme is reported. A form with a C-terminal hexahistidine tag could be crystallized under 18 different conditions in the absence of NADPH or Mg2+ and a further six crystallization conditions were identified with one or both ligands. With the hexahistidine tag on the N-terminus, 20 crystallization conditions were found, some of which required the presence of NADPH, NADP(+), Mg2+ or a combination of ligands. Finally, the selenomethionine-substituted enzyme with the N-terminal tag crystallized under 15 conditions. Thus, the enzyme is remarkably easy to crystallize. Most of the crystals diffract poorly but several data sets were collected at better than 3.2 Angstrom resolution; attempts to phase them are currently in progress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Isolation, identification and characterization of a highly efficient isomaltulose producer. Methods and Results: After an enrichment procedure for bacteria likely to metabolize isomaltulose in sucrose-rich environments, 578 isolates were screened for efficient isomaltulose biosynthesis using an aniline/diphenylamine assay and capillary electrophoresis. An isolate designated UQ68J was exceptionally efficient in sucrose isomerase activity. Conversion of sucrose into isomaltulose by UQ68J (enzyme activity of 90-100 U mg(-1) DW) was much faster than the current industrial strain Protaminobacter rubrum CBS574.77 (41-66 U mg(-1) DW) or a reference strain of Erwinia rhapontici (0.3-0.9 U mg(-1) DW). Maximum yield of isomaltulose at 78-80% of supplied sucrose was achieved in less than half the reaction time needed by CBS574.77, and the amount of contaminating trehalulose (4%) was the lowest recorded from an isomaltulose-producing microbe. UQ68J is a Gram negative, facultatively anaerobic, motile, noncapsulate, straight rod-shaped bacterium producing acid but no gas from glucose. Based on 16S rDNA analysis UQ68J is closest to Klebsiella oxytoca, but it differs from Klebsiella in defining characteristics and most closely resembles Pantoea dispersa in phenotype. Significance and Impact of Study: This organism is likely to have substantial advantage over previously characterized sucrose isomerase producers for the industrial production of isomaltulose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common problem encountered during the development of MS methods for the quantitation of small organic molecules by LGMS is the formation of non-covalently bound species or adducts in the electrospray interface. Often the population of the molecular ion is insignificant compared to those of all other forms of the analyte produced in the electrospray, making it difficult to obtain the sensitivity required for accurate quantitation. We have investigated the effects of the following variables: orifice potential, nebulizer gas flow, temperature, solvent composition and the sample pH on the relative distributions of ions of the types MH+, MNa+, MNH+, and 2MNa(+), where M represents a 4 small organic molecule: BAY 11-7082 ((E)-3-[4-methylphenylsulfonyl]-2-propenenitrile). Orifice potential, solvent composition and the sample pH had the greatest influence on the relative distributions of these ions, making these parameters the most useful for optimizing methods for the quantitation of small molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Biological catalysts have the advantage of being able to catalyse chemical reactions with an often exquisite degree of regio- and stereospecificity in contrast with traditional methods of organic synthesis. 2. The cytochrome P450 enzymes involved in human drug metabolism are ideal starting materials for the development of designer biocatalysts by virtue of their catalytic versatility and extreme substrate diversity. Applications can be envisaged in fine chemical synthesis, such as in the pharmaceutical industry and bioremediation. 3. A variety of techniques of enzyme engineering are currently being applied to P450 enzymes to explore their catalytic potential. Although most studies to date have been performed with bacterial P450s, reports are now emerging of work with mammalian forms of the enzymes. 4. The present minireview will explore the rationale and general techniques for redesigning P450s, review the results obtained to date with xenobiotic-metabolising forms and discuss strategies to overcome some of the logistic problems limiting the full exploitation of these enzymes as industrial-scale biocatalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation, (alpha-lipoic acid and a-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were. assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also bad no effect (p > 0.05). GPX (125.9 2.8 vs. 121.5 3.0 U.gHb(-1), p < 0.05) and CAT (6.1 0.2 vs. 5.6 0.2 U.mgHb-1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 4.3 vs. 52.0 5.2 U.mgHb(-1), p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimethylsulfide (DMS) dehydrogenase catalyses the oxidation of DMS to dimethylsulfoxide. The purified enzyme has three subunits of Mr = 94, 38 and 32 kDa and has an optical spectrum dominated by a b-type cytochrome. The metal ion and nucleotide analysis revealed 0.5 g-atom Mo, 9.8 g-atom Fe and 1.96 mol GMP per tool of enzyme. Taken together, these data indicate that DMS dehydrogenase contains a bis(MGD)Mo cofactor. A comparison of the Nterminal amino acid sequence of DMS dehydrogenase revealed that the Mo-containing ct-subunit was most closely related to the c~-subunits of nitrate reductase (NarG) and selenate reductase (SerA). Similarly, the [~-subunit of DMS dehydrogenase was most closely related to the [3-subunits of nitrate reductase (NarH) and selenate reductase (SerB). Variable temperature X-band EPR spectra (120-2K) of 'as isolated' DMS dehydrogenase showed resonances arising from multiple redox centres, Mo(V), [3Fe-4S] +, [4Fe-4S] ÷. A pH dependent EPR study of the Mo(V) centre in lH20 and 2H20 reveals the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(V)-X and Mo(V)-OH. Between pH6 and 8.2 the dominant species is Mo(V)-OH2 and Mo(V)-X is a minor component. X is probably the anion, chloride. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other Mo(V) centres in metalloproteins showed that it was most similar to the low pH nitrite spectrum of E. coli nitrate reductase (NarGHI). The spin Hamiltonian parameters (2.0158, 1.8870, 1.8620) for the [4Fe-4S] + cluster suggests the presence of histidine (N) coordination to iron in this cluster. It is suggested that this unusual [Fe-S] cluster may be associated with a histidine-cysteine rich sequence at the N-terminus of the ct-subunit of DMS dehydrogenase.