96 resultados para muscle tension

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective/Hypothesis: The purpose of this study was to examine respiratory function in a group of patients with muscle tension dysphonia (MTD) Design: Cross-sectional analytical study. Methods: Participants included 15 people with a diagnosis of MTD referred to speech pathology for management of their voice disorder, fiberoptic evidence of glottal or supraglottic constriction during phonation with or without posterior chink, or bowing combined and deviation in perceptual voice quality. A second group of 15 participants with no history of voice disorder served as healthy controls,. Baseline pulmonary function test measures included forced expiratory volume in the first second (FEV1), FVC, FEF25 to 75, FIF50, FEV1/FVC, ratio and FEF50/FIF50 ratio. Hypertonic saline challenge test measures included FEV1 and FIF50 after provocation, close response slope, and provocation dose. Results: Compared with healthy controls, participants with MTD demonstrated a higher prevalence of glottal constriction during inspiration after provocation with nebulized hypertonic saline as demonstrated by a reduction in FIF50 after the hypertonic saline challenge. There was no significant difference between the MTD and healthy control groups in baseline pulmonary function testing. Participants with MTD demonstrated a higher prevalence than healthy controls of abnormal glottic closure during inspiration similar to paradoxical vocal fold movement (PVFM). This suggests that they either had previously undiagnosed coexisting PVFM or that the condition of MTD could be expanded to include descriptions of aberrant glottic function during respiration. This study enhances the understanding of PVFM and MTD by combining research advances made in the fields of otolaryngology and respiratory medicine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The study examined symptom-specific muscle hyperreactivity in patients with chronic pain with upper limb cumulative trauma disorder (CTD). Design: Four tasks were presented in counterbalanced order and included neutral, general stressor, personal stressor, and pain stressor tasks. Ratings of stressfulness and recordings of skin conductance level confirmed the effectiveness of the experimental manipulations in inducing stress experiences for all subject groups. Setting: The study was conducted in a university research center. Patients: Thirty patients with CTD were matched as closely as possible for age and gender to control groups of chronic low back pain, arthritis, and pain-Free subjects Outcome Measures: Surface electromyograph recordings were taken from the frontalis, forearm flexors, trapezius, and lower back during baseline and tasks. Results: The study found no evidence of greater muscle tension increases or extended duration of return to baseline for the CTD or low back pain patients at any of the muscle sites for any of the tasks in comparison to control groups. Conclusions: The results indicate that symptom-specific psychophysiological responses may be limited to certain subgroups rather than being characteristic of chronic musculoskeletal pain patients in general.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study we investigated tension regulation in the human soleus (SOL) muscle during controlled lengthening and shortening actions. Eleven subjects performed plantar flexor efforts on an ankle torque motor through 30 degrees of ankle displacement (75 degrees-105 degrees internal ankle angle) at lengthening and shortening velocities of 5, 15 and 30 degrees s(-1). To isolate the SOL from the remainder of the triceps surae, the subject's knee was flexed to 60 degrees during all trials. Voluntary plantar flexor efforts were performed under two test conditions: (1) maximal voluntary activation (MVA) of the SOL, and (2) constant submaximal voluntary activation (SVA) of the SOL. SVA trials were performed with direct visual feedback of the SOL electromyogram (EMG) at a level resulting in a torque output of 30% of isometric maximum. Angle-specific (90 degrees ankle angle) torque and EMG of the SOL, medial gastrocnemius (MG) and tibialis anterior (TA) were recorded. In seven subjects from the initial group, the test protocol was repeated under submaximal percutaneous electrical activation (SEA) of SOL (to 30% isometric maximal effort). Lengthening torques were significantly greater than shortening torques in all test conditions. Lengthening torques in MVA and SVA were independent of velocity and remained at the isometric level, whereas SEA torques were greater than isometric torques and increased at higher lengthening velocities. Shortening torques were lower than the isometric level for all conditions. However, whereas SVA and SEA torques decreased at higher velocities of shortening, MVA torques were independent of velocity. These results indicate velocity- and activation-type-specific tension regulation in the human SOL muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha -lipoic acid (alpha -LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha -LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies less than or equal to 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of -LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of different methods of measuring training volume, controlled in different ways, on selected variables that reflect acute neuromuscular responses. Eighteen resistance-trained males performed three fatiguing protocols of dynamic constant external resistance exercise, involving elbow flexors, that manipulated either time-under-tension (TUT) or volume load (VL), defined as the product of training load and repetitions. Protocol A provided a standard for TUT and VL. Protocol B involved the same VL as Protocol A but only 40% concentric TUT; Protocol C was equated to Protocol A for TUT but only involved 50% VL. Fatigue was assessed by changes in maximum voluntary isometric contraction (MVIC), interpolated doublet (ID), muscle twitch characteristics (peak twitch, time to peak twitch, 0.5 relaxation time, and mean rates of force development and twitch relaxation). All protocols produced significant changes (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of three different weight training protocols, that varied in the way training volume was measured, on acute muscular fatigue. Ten resistance-trained males performed all three protocols which involved dynamic constant resistance exercise of the elbow flexors. Protocol A provided a standard for the time the muscle group was under tension (TUT) and volume load (VL), expressed as the product of the total number of repetitions and the load that was lifted. Protocol B involved 40% of the TUT but the same VL compared to protocol A; protocol C was equated with protocol A for TUT but only involved 50% of the VL. Fatigue was assessed by changes in maximum voluntary isometric force and integrated electromyography (iEMG) between the pre- and post-training protocols. The results of the study showed that, when equated for VL, greater TUT produced greater overall muscular fatigue ( p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[beta]-Hydroxy [beta]-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is one of the latest dietary supplements promoted to enhance gains in strength and lean body mass associated with resistance training. Unlike anabolic hormones that induce muscle hypertrophy by increasing muscle protein synthesis, HMB is claimed to influence strength and lean body mass by acting as an anticatabolic agent, minimising protein breakdown and damage to cells that may occur with intense exercise. Research on HMB has recently tested this hypothesis, under the assumption that it may be the active compound associated with the anticatabolic effects of leucine and its metabolites. While much of the available literature is preliminary in nature and not without methodological concern, there is support for the claims made regarding HMB supplementation, at least in young, previously untrained individuals. A mechanism by which this may occur is unknown, but research undertaken to date suggests there may be a reduction in skeletal muscle damage, although this has not been assessed directly. The response of resistance trained and older individuals to HMB administration is less clear. While the results of research conducted to date appear encouraging, caution must be taken when interpreting outcomes as most manuscripts are presented in abstract form only, not having to withstand the rigors of peer review. Of the literature reviewed relating to HMB administration during resistance training, only 2 papers are full manuscripts appearing in peer reviewed journals. The remaining 8 papers are published as abstracts only, making it difficult to critically review the research. There is clearly a need for more tightly controlled, longer duration studies to verify if HMB enhances strength and muscular hypertrophy development associated with resistance training across a range of groups, including resistance trained individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six men were studied during four 30-s all-out exercise bouts on an air-braked cycle ergometer. The first three exercise bouts were separated by 4 min of passive recovery; after the third bout, subjects rested for 4 min, exercised for 30 min at 30-35% peak O-2 consumption, and rested for a further 60 min before completing the fourth exercise bout. Peak power and total work were reduced (P < 0.05) during bout 3 [765 +/- 60 (SE) W; 15.8 +/- 1.0 kJ] compared with bout 1 (1,168 +/- 55 mT, 23.8 +/- 1.2 kJ), but no difference in exercise performance was observed between bouts 1 and 4 (1,094 +/- 64 W, 23.2 +/- 1.4 kJ). Before bout 3, muscle ATP, creatine phosphate (CP), glycogen, pH, and sarcoplasmic reticulum (SR) Ca2+ uptake were reduced, while muscle lactate and inosine 5'-monophosphate were increased. Muscle ATP and glycogen before bout 4 remained lower than values before bout I (P < 0.05), but there were no differences in muscle inosine 5'-monophosphate, lactate, pH, and SR Ca2+ uptake. Muscle CP levels before bout 4 had increased above resting levels. Consistent with the decline in muscle ATP were increases in hypoxanthine and inosine before bouts 3 and 4. The decline in exercise performance does not appear to be related to a reduction in muscle glycogen. Instead, it may be caused by reduced CP availability, increased H+ concentration, impairment in SR function, or some other fatigue-inducing agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the growth-regulating action of estrogen on vascular smooth muscle cells (SMC), effects of beta-17-estradiol (beta-E-2) on phenotypic modulation and proliferation of rabbit aortic SMC were observed in vitro. At 10(-8) M, beta-E-2 significantly slowed the decrease in volume fraction of myofilaments (V(v)myo) of freshly dispersed SMCs in primary culture, indicating an inhibitory effect of beta-E-2 On spontaneous phenotypic modulation of SMC from a contractile to a synthetic phenotype. Freshly dispersed SMCs treated with beta-E-2 also had a relatively longer quiescent phase than control cells before intense proliferation occurred. This was in contrast to SMCs in passage 2-3 (synthetic state), where beta-E-2-treated cells replicated significantly faster than untreated cells. beta-E-2 also markedly enhanced the serum-induced DNA synthesis of synthetic SMCs in a concentration-dependent manner within physiological range (10(-10) to 10-8 M). These findings indicate that the growth-regulating effect of estrogen on vascular SMC is dependent on the cell's phenotypic stare. It delays the cell cycle re-entry of the contractile SMCs by retarding their phenotypic modulation however, once cells have modulated to the synthetic phenotype, it promotes their replication. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1, Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3, In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degrees C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N, coriiceps at 0 degrees C, 4, It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish, Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanically skinned skeletal muscle fibres from rat and toad were exposed to the permeabilizing agents beta-escin and saponin. The effects of these agents on the sealed transverse tubular system (t-system) and sarcoplasmic reticulum (SR) were examined by looking at changes in the magnitude of the force responses to t-system depolarization, the time course of the fluorescence of fura-2 trapped in the sealed t-system, and changes in the magnitude of caffeine-induced contractures following SR loading with Ca2+ under defined conditions. In the presence of 2 mu g ml(-1) beta-escin and saponin, the response to t-system depolarization was not completely abolished, decreasing to a plateau, and a large proportion of fura-2 remained in the sealed t-system. At 10 mu g ml(-1), both agents abolished the ability of both rat and toad preparations to respond to t-system depolarization after 3 min of exposure, but a significant amount of fura-2 remained in sealed t-tubules even after exposure to 100 mu g ml(-1) beta-escin and saponin for 10 min. beta-Escin took longer than saponin to reduce the t-system depolarizations and fura-2 content of the sealed t-system to a similar level. The ability of the SR to load Ca2+ was reduced to a lower level after treatment with beta-escin than saponin. This direct effect on the SR occurred at much lower concentrations for rat (2 mu g ml(-1) beta-escin and 10 mu g ml(-1) saponin) than toad (10 mu g ml(-1) beta-escin and 150 mu g ml(-1) saponin). The reverse order in sensitivities to beta-escin and saponin of t-system and SR membranes indicates that the mechanisms of action of beta-escin and saponin are different in the two types of membrane. In conclusion, this study shows that: (1) beta-escin has a milder action on the surface membrane than saponin; (2) beta-escin is a more potent modifier of SR function; (3) simple permeabilization of membranes is not sufficient to explain the effects of beta-escin and saponin on muscle membranes; and (4) the t-system network within muscle fibres is not a homogeneous compartment.