4 resultados para muscle relaxation

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seven captive male African wild dogs (Lycaon pictus) weighing 25-32 kg each, were anesthetized by i.m. injection via hand syringe with a combination of 1.5 mg/kg ketamine, 40 mu g/kg medetomidine, and 0.05 mg/kg atropine. Following endotracheal intubation, each animal was connected to a bain closed-circuit system that delivered 1.5% isoflurane and 2 L/min oxygen. Atipamezole (0.1 mg/kg i.v.; 0.1 mg/kg i.m.) was given at the end of each procedure (60 min following injection of medetomidine/ketamine/atropine). Time to sternal recumbency was 5-8 min. Times to standing after atipamezole administration were 8-20 min. This anesthetic regimen was repeated on three separate occasions (September 2000, February 2002, and October 2002) on all males to perform electroejaculation procedures. Each procedure was < 80 min from injection to standing. Dogs showed excellent muscle relaxation during the procedures. Arterial blood samples were collected at 10-min intervals for blood gases in one procedure (September 2000). Separate venous samples were taken from each dog during each procedure for hematology and biochemistry. These values were within the normal range for this species. Arterial hemoglobin oxygen saturation (SpO2) and heart rate (HR) were monitored continuously in addition to other anesthesia monitoring procedures (body temperature, respiratory rate [RR], capillary refill time, blink response, pupil position, deep pain perception reflex). All dogs maintained relatively stable SpO2 profiles during monitoring, with a mean (+/- SD) SpO2 of 92% +/- 5.4%. All other physiological variables (HR, RR, body temperature, blood pressure) were within normal limits. Following each procedure, normal behavior was noted in all dogs. All the dogs were reunited into the pack at completion of their anesthetic procedures. An injectable medetomidine-ketamine-atropine combination with maintenance by gaseous isoflurane and oxygen provides an inexpensive, reliable anesthetic for captive African wild dogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protective roles for protease-activated receptor-2 (PAR2) in the airways including activation of epithelial chloride (Cl-) secretion are based on the use of presumably PAR(2)-selective peptide agonists. To determine whether PAR(2) peptide-activated Cl- secretion from mouse tracheal epithelium is dependent on PAR(2), changes in ion conductance across the epithelium [short-circuit current (I-SC)] to PAR(2) peptides were measured in Ussing chambers under voltage clamp. In addition, epithelium and endothelium-dependent relaxations to these peptides were measured in two established PAR(2) bioassays, isolated ring segments of mouse trachea and rat thoracic aorta, respectively. Apical application of the PAR(2) peptide SLIGRL caused increases in I-SC, which were inhibited by three structurally different neurokinin receptor-1 (NK1R) antagonists and inhibitors of Cl- channels but not by capsaicin, the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37), or the nonselective cyclooxygenase inhibitor indomethacin. Only high concentrations of trypsin caused an increase in I-SC but did not affect the responses to SLIGRL. Relaxations to SLIGRL in the trachea and aorta were unaffected by the NK1R antagonist nolpitantium (SR 140333) but were abolished by trypsin desensitization. The rank order of potency for a range of peptides in the trachea I-SC assay was 2-furoyl-LIGRL > SLCGRL > SLIGRL > SLIGRT > LSIGRL compared with 2-furoyl-LIGRL > SLIGRL > SLIGRT > SLCGRL (LSIGRL inactive) in the aorta relaxation assay. In the mouse trachea, PAR(2) peptides activate both epithelial NK1R coupled to Cl- secretion and PAR(2) coupled to prostaglandin E-2-mediated smooth muscle relaxation. Such a potential lack of specificity of these commonly used peptides needs to be considered when roles for PAR(2) in airway function in health and disease are determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are proposals for the implementation of beta(2)-adrenoceptor agonists for the management of muscle wasting diseases. The idea has been initiated by studies in animal models which show that beta(2)-adrenoceptor agonists cause hypertrophy of skeletal muscle. Their use in clinical practice will also need an understanding of possible effects of activation of human heart beta(2)-adrenoceptors. Consequences could include an increased probability of arrhythmias in susceptible patients.