7 resultados para multidrug resistance

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1. function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel present in many cells. In cardiomyocytes, we report that multiple exon 1 usage and alternative splicing produces four CFTR transcripts, with different 5'-untranslated regions, CFTRTRAD-139, CFTR-1C/-1A, CFTR-1C, and CFTR-1B. CFTR transcripts containing the novel upstream exons (exons -1C, -1B, and -1A) represent more than 90% of cardiac expressed CFTR mRNA. Regulation of cardiac CFTR expression, in response to developmental and pathological stimuli, is exclusively due to the modulation of CFTR-1C and CFTR-1C/-1A expression. Upstream open reading frames have been identified in the 5'-untranslated regions of all CFTR transcripts that, in conjunction with adjacent stem-loop structures, modulate the efficiency of translation initiation at the AUG codon of the main CFTR coding region in CFTRTRAD-139 and CFTR-1C/-1A transcripts. Exon(-1A), only present in CFTR-1C/-1A transcripts, encodes an AUG codon that is in-frame with the main CFTR open reading frame, the efficient translation of which produces a novel CFTR protein isoform with a curtailed amino terminus. As the expression of this CFTR transcript parallels the spatial and temporal distribution of the cAMP-activated whole-cell current density in normal and diseased hearts, we suggest that CFTR-1C/-1A provides the molecular basis for the cardiac cAMP-activated chloride channel. Our findings provide further insight into the complex nature of in vivo CFTR expression, to which multiple mRNA transcripts, protein isoforms, and post-transcriptional regulatory mechanisms are now added.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Verapamil inhibits tri-iodothyronine (T-3) efflux from several cell types, suggesting the involvement of multidrug resistance-associated (MDR) proteins in T-3 transport. The direct involvement of P-glycoprotein (P-gp) has not, however, been investigated. We compared the transport of I-125-T-3 in MDCKII cells that had been transfected with mdr1 cDNA (MDCKII-MDR) versus wild-type MDCKII cells (MDCKII), and examined the effect of conventional (verapamil and nitrendipine) and specific MDR inhibitors (VX 853 and VX 710) on I-125-T-3 efflux. We confirmed by Western blotting the enhanced expression of P-gp in MDCKII-MDR cells. The calculated rate of I-125-T-3 efflux from MDCKII-MDR cells (around 0.30/min) was increased twofold compared with MDCKII cells (around 0.15/min). Overall, cellular accumulation of I-125-T-3 was reduced by 26% in MDCKII-MDR cells compared with MDCKII cells, probably reflecting enhanced export of T-3 from MDCKII-MDR cells rather than reduced cellular uptake, as P-gp typically exports substances from cells. Verapamil lowered the rate of I-125-T-3 efflux from both MDCKII and MDCKII-MDR cells by 42% and 66% respectively, while nitrendipine reduced I-125-T-3 efflux rate by 36% and 48% respectively, suggesting that both substances inhibited other cellular T-3 transporters in addition to P-gp. The specific MDR inhibitors VX 853 and VX 710 had no effect of I-125-T-3 efflux rate from wild-type MDCKII cells but reduced I-125-T-3 export in MDCKII-MDR cells by 50% and 53% respectively. These results have provided the first direct evidence that P-gp exports thyroid hormone from cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbohydrates have been proven as valuable scaffolds to display pharmocophores and the resulting molecules have demonstrated useful biological activity towards various targets including the somatostatin receptors (SSTR), integrins, HIV-1 protease, matrix metalloproteinases (MMP), multidrug resistance-associated protein (MRP), and as RNA binders. Carbohydrate-based compounds have also shown antibacterial and herbicidal activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: To determine clonality and identify plasmid-mediated resistance genes in 11 multidrug-resistant Escherichia coli (MDREC) isolates associated with opportunistic infections in hospitalized dogs in Australia. Methods: Phenotypic (MIC determinations, modified double-disc diffusion and isoelectric focusing) and genotypic methods (PFGE, plasmid analysis, PCR, sequencing, Southern hybridization, bacterial conjugation and transformation) were used to characterize, investigate the genetic relatedness of, and identify selected plasmid-mediated antimicrobial resistance genes, in the canine MDREC. Results: Canine MDRECs were divided into two clonal groups (CG 1 and 2) with distinct restriction endonuclease digestion and plasmid profiles. All isolates possessed bla(CMY-7) on an similar to 93 kb plasmid. In CG 1 isolates, bla(TEM), catA1 and class 1 integron-associated dfrA17-aadA5 genes were located on an similar to 170 kb plasmid. In CG 2 isolates, a second similar to 93 kb plasmid contained bla(TEM) and unidentified class 1 integron genes, although a single CG 2 strain carried dfrA5. Antimicrobial susceptibility profiling of E. coli K12 transformed with CG 2 large plasmids confirmed that the bla(CMY-7)-carrying plasmid did not carry any other antimicrobial resistance genes, whereas the bla(TEM)/class 1 integron-carrying plasmid carried genes conferring resistance to tetracycline and streptomycin also. Conclusions: This is the first report on the detection of plasmid-mediated bla(CMY-7) in animal isolates in Australia. MDREC isolated from extraintestinal infections in dogs may be an important reservoir of plasmid-mediated resistance genes.