77 resultados para multi-quasi-elliptic operators
em University of Queensland eSpace - Australia
Resumo:
We develop results for bifurcation from the principal eigenvalue for certain operators based on the p-Laplacian and containing a superlinear nonlinearity with a critical Sobolev exponent. The main result concerns an asymptotic estimate of the rate at which the solution branch departs from the eigenspace. The method can also be applied for nonpotential operators.
Resumo:
Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.
Resumo:
The goal of this paper is to study the multiplicity of positive solutions of a class of quasilinear elliptic equations. Based on the mountain pass theorems and sub-and supersolutions argument for p-Laplacian operators, under suitable conditions on nonlinearity f (x, s), we show the following problem: -Delta(p)u = lambda f(x,u) in Omega, u/(partial derivative Omega) = 0, where Omega is a bounded open subset of R-N, N >= 2, with smooth boundary, lambda is a positive parameter and Delta(p) is the p-Laplacian operator with p > 1, possesses at least two positive solutions for large lambda.
Resumo:
The Gaudin models based on the face-type elliptic quantum groups and the XYZ Gaudin models are studied. The Gaudin model Hamiltonians are constructed and are diagonalized by using the algebraic Bethe ansatz method. The corresponding face-type Knizhnik–Zamolodchikov equations and their solutions are given.
Resumo:
In this work we investigate several important aspects of the structure theory of the recently introduced quasi-Hopf superalgebras (QHSAs), which play a fundamental role in knot theory and integrable systems. In particular we introduce the opposite structure and prove in detail (for the graded case) Drinfeld's result that the coproduct Delta ' =_ (S circle times S) (.) T (.) Delta (.) S-1 induced on a QHSA is obtained from the coproduct Delta by twisting. The corresponding "Drinfeld twist" F-D is explicitly constructed, as well as its inverse, and we investigate the complete QHSA associated with Delta '. We give a universal proof that the coassociator Phi ' = (S circle times S circle times S) Phi (321) and canonical elements alpha ' = S(beta), beta ' = S(alpha) correspond to twisting, the original coassociator Phi = Phi (123) and canonical elements alpha, beta with the Drinfeld twist F-D. Moreover in the quasi-tri angular case, it is shown algebraically that the R-matrix R ' = (S circle times S)R corresponds to twisting the original R-matrix R with F-D. This has important consequences in knot theory, which will be investigated elsewhere.
Resumo:
Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.
Resumo:
A reversible linear master equation model is presented for pressure- and temperature-dependent bimolecular reactions proceeding via multiple long-lived intermediates. This kinetic treatment, which applies when the reactions are measured under pseudo-first-order conditions, facilitates accurate and efficient simulation of the time dependence of the populations of reactants, intermediate species and products. Detailed exploratory calculations have been carried out to demonstrate the capabilities of the approach, with applications to the bimolecular association reaction C3H6 + H reversible arrow C3H7 and the bimolecular chemical activation reaction C2H2 +(CH2)-C-1--> C3H3+H. The efficiency of the method can be dramatically enhanced through use of a diffusion approximation to the master equation, and a methodology for exploiting the sparse structure of the resulting rate matrix is established.
Resumo:
Multi-frequency bioimpedance analysis (MFBIA) was used to determine the impedance, reactance and resistance of 103 lamb carcasses (17.1-34.2 kg) immediately after slaughter and evisceration. Carcasses were halved, frozen and one half subsequently homogenized and analysed for water, crude protein and fat content. Three measures of carcass length were obtained. Diagonal length between the electrodes (right side biceps femoris to left side of neck) explained a greater proportion of the variance in water mass than did estimates of spinal length and was selected for use in the index L-2/Z to predict the mass of chemical components in the carcass. Use of impedance (Z) measured at the characteristic frequency (Z(c)) instead of 50 kHz (Z(50)) did not improve the power of the model to predict the mass of water, protein or fat in the carcass. While L-2/Z(50) explained a significant proportion of variation in the masses of body water (r(2) 0.64), protein (r(2) 0.34) and fat (r(2) 0.35), its inclusion in multi-variate indices offered small or no increases in predictive capacity when hot carcass weight (HCW) and a measure of rib fat-depth (GR) were present in the model. Optimized equations were able to account for 65-90 % of the variance observed in the weight of chemical components in the carcass. It is concluded that single frequency impedance data do not provide better prediction of carcass composition than can be obtained from measures of HCW and GR. Indices of intracellular water mass derived from impedance at zero frequency and the characteristic frequency explained a similar proportion of the variance in carcass protein mass as did the index L-2/Z(50).
Resumo:
The interlayer magnetoresistance of the quasi-two-dimensional metal alpha-(BEDT-TTF)(2)KHg(SCN)(4) is considered. In the temperature range from 0.5 to 10 K and for fields up to 10 T the magnetoresistance has a stronger temperature dependence than the zero-field resistance. Consequently Kohler's rule is not obeyed for any range of temperatures or fields. This means that the magnetoresistance cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Possible explanations for the violations of Kohler's rule are considered, both within the framework of semiclassical transport theory and involving incoherent interlayer transport. The issues considered are similar to those raised by the magnetotransport of the cuprate superconductors. [S0163-1829(98)13219-8].
Resumo:
A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.