103 resultados para mucosal immunity

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown previously that recombinant virus-like particles (VLPs) of papillomavirus can induce VLP-specific humoral and cellular immune responses following parenteral administration. To test whether mucosal administration of bovine papillomavirus type 1 (BPV1) VLPs could produce mucosal as well as systemic immune responses to VLPs, 50 mu g chimeric BPV1 VLPs containing an HPV16 E7 CTL epitope (BPVL1/E7 VLP) was administered intranasally to mice. After two immunisations, L1-specific serum IgG and IgA were observed. L1-specific IgG and IgA were also found in respiratory and vaginal secretions. Both serum and mucosal antibody inhibited papillomavirus VLP-induced agglutination of RBC, indicating that the antibody induced by mucosal immunisation may recognize conformational determinants associated with virus neutralisation. For comparison, VLPs were given intramuscularly, and systemic and mucosal immune responses were generally comparable following systemic or mucosal delivery. However, intranasal administration of VLP induced significantly higher local IgA response in lung, suggesting that mucosally delivered HPV VLP may be more effective for mediating local mucosal immune responses. Intranasal immunisation with HPV6b L1 VLP produced VLP-specific T proliferative responses in splenocytes, and immunisation with BPVL1 VLP containing an HPV16 E7 CTL epitope induced E7-specific CTL responses. We conclude that immunisation with papillomavirus VLPs via mucosal and intramuscular routes, without adjuvant, can elicit specific antibody at mucosal surfaces and also systemic VLP epitope specific T cell responses. These findings suggest that mucosally delivered VLPs may offer an alternative HPV VLP vaccine strategy for inducing protective humoral immunity to anogenital HPV infection, together with cell-mediated immune responses to eliminate any cells which become infected. (C) 1998 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

IBD are a group of complex polygenetic diseases also involving environmental factors. Evidence for a role for bacteria in IBD include an increased abundance of mucosa-associated bacteria in IBD (which occurs even where there is no intestinal inflammation), and the positive impact of antibiotics on the progress of both Crohn's disease (CD) and ulcerative colitis (UC) of the pouch - pouchitis. Bacteria are necessary for most animal models of IBD. The increased abundance of mucosal bacteria in IBD is not non-specific because while some mucosal bacteria are more abundant this is not the case for all mucosal bacteria including the very abundant Bacteroides vulgatus. On the other hand, antibiotic treatments are not curative, and the humoral immune Ig response to bacterial antigens which is more evident in CD, appears to be polyclonal. While this argues against a role for specific bacteria causing a classical infection, certain mucosal bacteria may damage the mucosal barrier. This would promote invasion by other commensal mucosal bacteria triggering an immune response. Altered adaptive, and to a lesser extent, innate immunity have been extensively studied, and genetic defects in the CARD15 (or NOD2) gene that encodes a bacterial sensing protein modulating innate and adaptive immunity are strongly associated with ileal CD. However, the penetrance of the homozygous CARD15 frameshift mutation, which is the most strongly CD-associated genotype, is very low with only 4% of humans with this developing CD. Furthermore, mice with the same defects in CARD15 do not develop spontaneous ileitis or colitis. Therefore, there have to be other aetiological factor(s). Altered permeability is a consistent finding in subclinical CD. There are other data to suggest that altered mucin is an early event in UC. We propose that the pathogenesis of IBD is multifactorial involving specific mucosal bacteria, defective barrier function and altered mucosal immunity in an aetiology triangle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Dendritic cells (DC) are the only antigen-presenting cells that can activate naive T lymphocytes and initiate a primary immune response. They are also thought to have a role in immune tolerance. DC traffic from the blood to peripheral tissue where they become activated. They then present antigen and the costimulating signals necessary to initiate an immune response. In this study, we investigated the number, subsets, and activation pattern of circulating and intestinal DC from patients with clinically mild ulcerative colitis (UC) or Crohn's disease. METHODS: Patients were recruited, if they were not taking immunosuppressive therapy, and were assessed for clinical severity of their disease using for UC, the Clinical Activity Index, and for Crohn's disease, the Crohn's Disease Activity Index. Blood CD11c(+) and CD11c(-) DC subsets, expression of costimulatory antigens, CD86 and CD40, and the early differentiation/activation antigen, CMRF44, were enumerated by multicolor flow cytometry of lineage negative (lin(-) = CD3(-), CD19(-), CD14(-), CD16(-)) HLA-DR+ DC. These data were compared with age-matched healthy and the disease control groups of chronic noninflammatory GI diseases (cGI), acute noninflammatory GI diseases (aGI), and chronic non-GI inflammation (non-GI). In addition, cryostat sections of colonoscopic biopsies from healthy control patients and inflamed versus noninflamed gut mucosa of inflammatory bowel disease (IBD) patients were examined for CD86(+) and CD40(+)lin(-) cells. RESULTS: Twenty-one Crohn's disease and 25 UC patients, with mean Crohn's Disease Activity Index of 98 and Clinical Activity Index of 3.1, and 56 healthy controls, five cGI, five aGI, and six non-GI were studied. CD11c(+) and CD11c(-) DC subsets did not differ significantly between Crohn's, UC, and healthy control groups. Expression of CD86 and CD40 on freshly isolated blood DC from Crohn's patients appeared higher (16.6%, 31%) and was significantly higher in UC (26.6%, 46.3%) versus healthy controls (5.5%, 25%) (p = 0.004, p = 0.012) and non-GI controls (10.2%, 22.8%) (p = 0.012, p = 0.008), but not versus cGI or aGI controls. CD86(+) and CD40(+) DC were also present in inflamed colonic and ileal mucosa from UC and Crohn's patients but not in noninflamed IBD mucosa or normal mucosa. Expression of the CMRF44 antigen was low on freshly isolated DC, but it was upregulated after 24-h culture on DC from all groups, although significantly less so on DC from UC versus Crohn's or healthy controls (p = 0.024). The CMRF44(+) antigen was mainly associated with CD11c(+) DC, and in UC was inversely related to the Clinical Activity Index (r = -0.69, p = 0.0002). CONCLUSIONS: There is upregulation of costimulatory molecules on blood DC even in very mild IBD but surprisingly, there is divergent expression of the differentiation/activation CMRF44 antigen. Upregulation of costimulatory molecules and divergent expression of CMRF44 in blood DC was also apparent in cGI and aGI but not in non-GI or healthy controls, whereas intestinal CD86(+) and CD40(+) DC were found only in inflamed mucosa from IBD patients. Persistent or distorted activation of blood DC or divergent regulation of costimulatory and activation antigens may have important implications for gut mucosal immunity and inflammation. (Am J Gastroenterol 2001;96:2946-2956. (C) 2001 by Am. Coll. of Gastroenterology).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have identified novel adjuvant activity in specific cytosol fractions from trophozoites of Giardia isolate BRIS/95/HEPU/2041 (J. A. Upcroft, P. A. McDonnell, and P. Upcroft, Parasitol. Today, 14:281-284, 1998). Adjuvant activity was demonstrated in the systemic and mucosal compartments when Giardia extract was coadministered orally with antigen to mice. Enhanced antigen-specific serum antibody responses were demonstrated by enzyme-linked immunosorbent. assay to be comparable to those generated by the gold standard, mucosal adjuvant cholera toxin. A source of adjuvant activity was localized to the cytosolic component of the parasite. Fractionation of the cytosol produced fraction pools, some of which, when coadministered with antigen, stimulated an enhanced antigen-specific serum response. The toxic component of conventional mucosal adjuvants is associated with adjuvant activity; therefore, in a similar way, the toxin-like attributes of BRIS/95/HEPU/2041 may be responsible for its adjuvanticity. Complete characterization of the adjuvant is under way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials. (C) 2002 Elsevier Science (USA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this longitudinal study was to determine salivary levels of total IgA, IgG and IgM in 84 preterm and 214 full-term infants, from birth to 18 months of age. Unstimulated whole saliva was collected from each infant at birth, and subsequently at 3-monthly intervals. Immunoglobulin levels were estimated using an ELISA technique. At birth, IgA was detected in 147/214 (69%) full-term infants but only 47/84 (56%) preterm infants (P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orofacial granulomatosis (OFG) is a condition of unknown aetiology with histological and, in some cases, clinical association with Crohn's disease (CD). However, the exact relationship between OFG and CD remains uncertain. The aim of this study was to determine whether OFG could be distinguished immunologically from CD by comparing non-specific and specific aspects of humoral immunity in serum, whole saliva and parotid saliva in three groups of patients: (a) OFG only (n = 14), (b) those with both oral and gut CD (OFG + CD) (n = 12) and (c) CD without oral involvement (n = 22) and in healthy controls (n = 29). Non-specific immunoglobulin (IgA, SigA, IgA subclasses and IgG) levels and antibodies to whole cells of Saccharomyces cerevisiae, Candida albicans and Streptococcus mutans were assayed by enzyme-linked immunosorbent assay (ELISA) in serum, whole saliva and parotid saliva. Serum IgA and IgA1 and IgA2 subclasses were raised in all patient groups (P < 0.01). Salivary IgA (and IgG) levels were raised in OFG and OFG + CD (P < 0.01) but not in the CD group. Parotid IgA was also raised in OFG and OFG + CD but not in CD. The findings suggest that serum IgA changes reflect mucosal inflammation anywhere in the GI tract but that salivary IgA changes reflect involvement of the oral cavity. Furthermore, the elevated levels of IgA in parotid saliva suggest involvement of the salivary glands in OFG. Serum IgA antibodies to S. cerevisiae were raised markedly in the two groups with gut disease while serum IgA (or IgG) antibodies to C. albicans were elevated significantly in all three patient groups (P < 0.02). No differences were found with antibodies to S. mutans. Whole saliva IgA antibodies to S. cerevisiae (and C. albicans) were raised in the groups with oral involvement. These findings suggest that raised serum IgA antibodies to S. cerevisiae may reflect gut inflammation while raised SIgA antibodies to S. cerevisiae or raised IgA or IgA2 levels in saliva reflect oral but not gut disease. Analysis of salivary IgA and IgA antibodies to S. cerevisiae as well as serum antibodies in patients presenting with OFG may allow prediction of gut involvement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/aims: Clinical and laboratory studies are consistent with a major role for cell-mediated immunity in recovery from oral infection with Candida albicans, but the role of humoral immunity remains controversial. The purpose of this study was to establish the relative contributions of cellular and humoral immunity to protection against oral candidiasis in a murine model, and to determine whether host responses could be enhanced by different immunization strategies. Results: Active oral immunization was protective in BALB/c and CBA/CaH mice, reducing both fungal burden and duration of infection after secondary challenge, whereas systemic immunization failed to protect against subsequent oral challenge. Candida-specific IgM was the predominant antibody detected in serum following both primary and secondary oral challenge; however, Candida-specific salivary IgA was not detectable. Immunization by passive transfer of either lymphocytes or immune serum did not confer any significant protection against oral infection in either susceptible or resistant mouse strain. Conclusion: The data demonstrate a possible role for mucosa-associated immunity following active immunization by the oral route, most likely exerted by local T lymphocytes resident in the oral mucosa, but there was no evidence to support a role for humoral immunity in protection against oral candidiasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary vaccine strategies against group A streptococci (GAS) have focused on the M protein-the target of opsonic antibodies important for protective immunity. We have previously reported protection of mice against GAS infection following parenteral delivery of a multi-epitope vaccine construct, referred to as a heteropolymer. This current report has assessed mucosal (intranasal (i.n.) and oral) delivery of the heteropolymer in mice with regard to the induction and specificity of mucosal and systemic antibody responses, and compared this to parenteral delivery. GAS-specific IgA responses were detected in saliva and gut upon i.n. and oral delivery of the heteropolymer co-administered with cholera toxin B subunit, respectively. High titre serum IgG responses were elicited to the heteropolymer following all routes of delivery when administered with adjuvant. Moreover, as with parenteral delivery, serum IgG antibodies were detected to the individual heteropolymer peptides following i.n. but not oral delivery. These data support the potential of the i.n. route in the mucosal delivery of a GAS vaccine. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of individual viral proteins in the immune response to bluetongue virus (BTV) is not clearly understood. To investigate the contributions of the outer capsid proteins, VP2 and VP5, and possible interactions between them, these proteins were expressed from recombinant vaccinia viruses either as individual proteins or together in double recombinants, or with the core protein VP7 in a triple recombinant. Comparison of the immunogenicity of the vaccinia expressed proteins with BTV expressed proteins was carried out by inoculation of rabbits and sheep. Each of the recombinants was capable of stimulating an anti-BTV antibody response, although there was a wide range in the level of response between animals and species. Vaccinia-expressed VP2 was poorly immunogenic, particularly in rabbits. VP5, on the whole, stimulated higher ELISA titers in rabbits and sheep and in some animals in both species was able to stimulate virus neutralizing antibodies. When the protective efficacy of VP2 and VP5 was tested in sheep, vaccinia-expressed VP2, VP5 and VP2 + VP5 were protective, with the most consistent protection being in groups immunized with both proteins. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outcome of a virus infection is strongly influenced by interactions between host immune defences and virus 'anti-defence' mechanisms. For many viruses, their continued survival depends on, the speed of their attach: their capacity to replicate and transmit to uninfected hosts prior to their elimination by an effective immune response. In contrast, the success of persistent viruses lies in their capacity for immunological subterfuge: the evasion of host defence mechanisms by either mutation (covered elsewhere in this issue, by Gould and Bangham, pp. 321-328) or interference with the action of host cellular proteins that are important components of the immune response. This review will focus on the strategies employed by persistent viruses against two formidable host defences against virus infection: the CD8+ cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a parr in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactivity of sera from patients with cervical cancer with the E7 protein of human papilloma virus type 16 (HPV16) was estimated using a novel non-radioactive immunoprecipitation assay and four established protein-and peptide-based immunoassays. Six of 14 sera from patients with cervical cancer and 1 of 10 sera from healthy laboratory staff showed repeated reactivity with E7 in at least one assay. Four of the 7 reactive sera were consistently reactive in more than one assay, but only one was reactive in all four assays. Following immunization with E7, 2 of 5 patients with cervical cancer had increased E7-specific reactivity, measurable in one or more assays. No single assay was particularly sensitive for E7 reactivity, or predictive of cervical cancer. Mapping of E7 reactivity to specific E7 peptides was unsuccessful, suggesting that natural or induced E7 reactivity in human serum is commonly directed to conformational epitopes of E7, These results suggest that each assay employed with is study measures a different aspect of E7 reactivity, and that various reactivities to E7 may manifest following HPV infection or immunization. This finding is of significance for monitoring of E7 immunotherapy and for serological screening for cervical cancer. Copyright (C) 2000 S.Karger, AG. Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis, In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is turner and therapy dependent.