17 resultados para moult energetics
em University of Queensland eSpace - Australia
Resumo:
Factors influencing the rate of cannibalism in juvenile blue-swimmer crabs Portunus pelagicus were investigated under controlled conditions using time-lapse video recordings. This study was undertaken to improve blue-swimmer crab culture and experimentally addressed (1) prey vulnerability (2) cannibal-victim interactions, and (3) activity patterns of juveniles in varying degrees of refuge. Crabs used in the study were aged 15 weeks and sorted into two size classes; small (less than or equal to 60 mm carapace width (CW)) and large (greater than or equal to65 mm CW) of a similar sex ratio. Vulnerability and thus survival was influenced by body size variation, moult stage and refuge availability. Crabs with carapace width less than or equal to 60 mm were more vulnerable than larger individuals, as indicated by significant differences in survival rates. As predicted, juveniles in transition stages associated with ecdysis were especially vulnerable. Premoult (redliner) crabs appeared to be in a high state of agitation as evidenced by the frequency of agonistic encounters and this may be a contributing factor to the high mortality observed at this critical premoult stag. increases in refuge density increased survival of juveniles proportionally, indicating that the quantity of shelter is important for reducing cannibalism in this species. Cannibal-victim interactions were frequently asymmetrical in terms of size and moult stage. Cannibals were significantly heavier than victims, and were predominantly at intermoult stage. Sexual biases among cannibals and victims were not found in this study. Activity patterns of juveniles were influenced by the experimental conditions. Crabs provided with high refuge showed reduced aggressive activity and increased time spent resting, but unchanged locomotion or feeding activity. Regular grading as well as the presence of suitable shelter for newly moulted crabs is recommended for improving culture of P. pelagicus. Research into inducing synchronous moulting may also yield promising results. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Stickiness is a common problem encountered in food handling and processing, and also during consumption. Stickiness is observed as adhesion of the food to processing equipment surfaces or cohesion within the food particulate or mass. An important operation where this undesirable behavior of food is manifested is drying. This occurs particularly during drying of high-sugar and high-fat foods. To date, the stickiness of foods during drying or dried powder has been investigated in relation to their viscous and glass transition properties. The importance of contact surface energy of the equipment has been ignored in many analyses, despite the fact that some drying operations have reported using low-energy contact surfaces in drying equipment to avoid the problems caused by stickiness. This review discusses the fundamentals of adhesion and cohesion mechanisms and relates these phenomena to drying and dried products.
Resumo:
Remote measurement of the physiology, behaviour and energetic status of free-living animals is made possible by a variety of techniques that we refer to collectively as 'biotelemetry'. This set of tools ranges from transmitters that send their signals to receivers up to a few kilometers away to those that send data to orbiting satellites and, more frequently, to devices that log data. They enable researchers to document, for long uninterrupted periods, how undisturbed organisms interact with each other and their environment in real time. In spite of advances enabling the monitoring of many physiological and behavioural variables across a range of taxa of various sizes, these devices have yet to be embraced widely by the ecological community. Our review suggests that this technology has immense potential for research in basic and applied animal ecology. Efforts to incorporate biotelemetry into broader ecological research programs should yield novel information that has been challenging to collect historically from free-ranging animals in their natural environments. Examples of research that would benefit from biotelemetry include the assessment of animal responses to different anthropogenic perturbations and the development of life-time energy budgets.
Resumo:
Magnitudes and patterns of energy expenditure in animal contests are seldom measured, but can be critical for predicting contest dynamics and understanding the evolution of ritualized fighting behaviour. In the sierra dome spider, males compete for sexual access to females and their webs. They show three distinct phases of fighting behaviour, escalating from ritualized noncontact display (phase 1) to cooperative wrestling (phase 2), and finally to unritualized, potentially fatal fighting (phase 3). Using CO2 respirometry, we estimated energetic costs of male-male combat in terms of mean and maximum metabolic rates and the rate of increase in energy expenditure. We also investigated the energetic consequences of age and body mass, and compared fighting metabolism to metabolism during courtship. All three phases involved mean energy expenditures well above resting metabolic rate (3.5 X, 7.4 X and 11.5 X). Both mean and maximum energy expenditure became substantially greater as fights escalated through successive phases. The rates of increase in energy use during phases 2 and 3 were much higher than in phase 1. In addition, age and body mass affected contest energetics. These results are consistent with a basic prediction of evolutionarily stable strategy contest models, that sequences of agonistic behaviours should be organized into phases of escalating energetic costs. Finally, higher energetic costs of escalated fighting compared to courtship provide a rationale for first-male sperm precedence in this spider species. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper we report the results of ab initio calculations on the energetics and kinetics of oxygen-driven carbon gasification reactions using a small model cluster, with full characterisation of the stationary points on the reaction paths. We show that previously unconsidered pathways present significantly reduced barriers to reaction and must be considered as alternative viable paths. At least two electronic spin states of the model cluster must be considered for a complete description. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Gait repertoires of the northern brown bandicoot, Isoodon macrourus, were studied over a wide range of locomotor speeds. At low relative speeds, bandicoots used symmetrical gaits that included pacing, trotting, and lateral sequence strides. Forefoot contact duration was generally shorter than hind foot contact duration at all speeds. At moderate relative speeds bandicoots used half-bounding gaits with either no period of suspension or with a short gathered suspension. At high speeds the predominant gait had both a short extended and a short gathered suspension, although some strides comprised only an extended suspension. Increases in speed were accompanied by increases in spinal extension, presumably leading to the extended suspensions. On a stationary treadmill individuals occasionally used a bipedal gait. Maximum half-bounding speeds appear to be relatively low in this species.
Resumo:
Carotenoids, particularly astaxanthin, are the primary pigment in crustacean shell colour. Sub-adults of the western rock lobster, Panulirus cygnus, moult from a deep red colour (termed the red phase) to a much paler colour (the white phase) at sexual maturation. We observe a 2.4-fold difference in the amount of total carotenoid present in the shell extracts of reds compared to whites, as might be expected. However, analysis of the underlying epithelium shows that there is no correlation with shell colour and the amount of free (unesterified) astaxanthin-the level of free astaxanthin in reds and whites is not significantly different. Instead, we observe a correlated two-fold difference in the amount of esterified astaxanthin present in the epithelium of red versus white individuals. These data suggest a role for esterified astaxanthin in regulating shell colour formation and suggest that esterification may promote secretion and eventual incorporation of unesterified astaxanthin into the exoskeleton. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A comparison is made between Arrhenius and transition-state analyses of the temperature dependence of rate constants reported in four published biosensor studies. Although the Eyring transition-state theory seemingly affords a more definitive solution to the problem of characterizing the activation energetics, the analysis is equivocal because of inherent assumptions about reaction mechanism and the magnitude of the transmission coefficient. In view of those uncertainties it is suggested that a preferable course of action entails reversion to the empirical Arrhenius analysis with regard to the energy of activation and a preexponential factor. The former is essentially equivalent to the enthalpy of activation, whereas the magnitude of the latter indicates directly the extent of disparity between the frequency of product formation and the universal frequency factor (temperature multiplied by the ratio of the Boltzmann and Planck constants) and hence the likelihood of a more complicated kinetic mechanism than that encompassed by the Eyring transition-state theory. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
To describe single-walled carbon nanotube (SWNT) arrays, we propose a self-similar array model. For isolated SWNT bundles, the self-similar array model is consistent with the classical triangular array model; for SWNT bundle arrays, it can present hierarchy structures and specify different array configurations. Based on this self-similar array model, we calculated the energetics of SWNT arrays, investigated the driving force for the formation of macroscopic SWNT arrays, and briefly discussed the hierarchy structures in real macroscopic SWNT arrays. (c) 2005 American Institute of Physics.
Resumo:
The objective of this review is to draw attention to potential pitfalls in attempts to glean mechanistic information from the magnitudes of standard enthalpies and entropies derived from the temperature dependence of equilibrium and rate constants for protein interactions. Problems arise because the minimalist model that suffices to describe the energy differences between initial and final states usually comprises a set of linked equilibria, each of which is characterized by its own energetics. For example, because the overall standard enthalpy is a composite of those individual values, a positive magnitude for AHO can still arise despite all reactions within the subset being characterized by negative enthalpy changes: designation of the reaction as being entropy driven is thus equivocal. An experimenter must always bear in mind the fact that any mechanistic interpretation of the magnitudes of thermodynamic parameters refers to the reaction model rather than the experimental system For the same reason there is little point in subjecting the temperature dependence of rate constants for protein interactions to transition-state analysis. If comparisons with reported values of standard enthalpy and entropy of activation are needed, they are readily calculated from the empirical Arrhenius parameters. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The ornate tropical rock lobster, Panulirus ornatus has substantial potential as an aquaculture species though disease outbreaks during the animal's extended larval lifecycle are major constraints for success. In order to effectively address such disease-related issues, an improved understanding of the composition and dynamics of the microbial communities in the larval rearing tanks is required. This study used flow cytometry and molecular microbial techniques (clone libraries and denaturing gradient gel electrophoresis (DGGE)) to quantify and characterise the microbial community of the water column in the early stages (developmental stage I-II) of a P. ornatus larval rearing system. DGGE analysis of a 5000 L larval rearing trial demonstrated a dynamic microbial community with distinct changes in the community structure after initial stocking (day I to day 2) and from day 4 to day 5, after which the structure was relatively stable. Flow cytometry analysis of water samples taken over the duration of the trial demonstrated a major increase in bacterial load leading up to and peaking on the first day of the initial larval moult (day 7), before markedly decreasing prior to when > 50% of larvae moulted (day 9). A clone library of a day 10 water sample taken following a mass larval mortality event reflected high microbial diversity confirmed by statistical analysis indices. Sequences retrieved from both clone library and DGGE analyses were dominated by gamma- and alpha-Proteobacteria affiliated organisms with additional sequences affiliated with beta- and epsilon-Proteobacteria, Bacteroidetes, Cytophagales and Chlamydiales groups. Vibrio affiliated species were commonly retrieved in the clone library, though absent from DGGE analysis.
Resumo:
Growth, Condition Index (CI) and survival of the pearl oysters, Pinctada maxima and R margaritifera, were measured in three size groups of oysters over 14 months at two dissimilar environments in the Great Barrier Reef lagoon. These were the Australian Institute of Marine Science (AIMS) in a mainland bay and Orpheus Island Research Station (OIRS) in coral reef waters. Temperature, suspended particulate matter (SPM) and particulate organic matter (POM) were monitored during the study. Temperature at AIMS fluctuated more widely than at OIRS both daily and seasonally, with annual ranges 20-31 degrees C and 22-30 degrees C, respectively. Mean SPM concentration at AIMS (11.1 mg l(-1)) was much higher than at OIRS (1.4 mg l(-1)) and fluctuated widely (2-60 mg l(-1)). Mean POM level was also substantially higher at AIMS, being 2.1 mg l(-1) compared with 0.56 mg l(-1) at OIRS. Von Bertalatiffy growth curve analyses showed that P. maxima grew more rapidly and to larger sizes than P. margaritifera at both sites. For the shell height (SH) of R maxima, growth index phi'=4.31 and 4.24, asymptotic size SHinfinity = 229 and 205 mm, and time to reach 120 mm SH (T-(120))= 1.9 and 2.1 years at AIMS and OIRS, respectively. While for P margaritifera, phi'=4.00 and 4.15, SHinfinity = 136 and 157 mm, and T-(120) = 2.5 and 3.9 years at AIMS and OIRS, respectively. R maxima had significantly lower growth rates and lower survival of small oysters during winter compared with summer. There were, however, no significant differences between the two sites in growth rates of P. maxima and final Cl values. In contrast, P. margaritifiera showed significant differences between sites and not seasons, with lower growth rates, survival of small oysters, final Cl values and asymptotic sizes at AIMS. The winter low temperatures, but not high SPM at AIMS, adversely affected P. maxima. Conversely, the high SPM levels at AIMS, but not temperature, adversely affected P. margaritifera. This was in accordance with earlier laboratory-based energetics studies of the effects of temperature and SPM on these two species. P maxima has potential to be commercially cultured in ca. > 25 degrees C waters with a wide range of SPM levels, including oligotrophic coral reef waters with appropriate particle sizes. It is possible to culture R margaritifera in turbid conditions, but its poor performance in these conditions makes commercial culture unlikely. (c) 2005 Elsevier B.V. All rights reserved.