5 resultados para monosomy 4q

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is associated with multiple risk factors and is believed to arise from pre-neoplastic lesions, usually in the background of cirrhosis. However, the genetic and epigenetic events of hepatocarcinogenesis are relatively poorly understood. HCC display gross genomic alterations, including chromosomal instability (CIN), CpG island methylation, DNA rearrangements associated with hepatitis B virus (HBV) DNA integration, DNA hypomethylation and, to a lesser degree, microsatellite instability. Various studies have reported CIN at chromosomal regions, 1p, 4q, 5q, 6q, 8p, 10q, 11p, 16p, 16q, 17p and 22q. Frequent promoter hypermethylation and subsequent loss of protein expression has also been demonstrated in HCC at tumor suppressor gene (TSG), p16, p14, p15, SOCS1, RIZ1, E-cadherin and 14-3-3 sigma. An interesting observation emerging from these studies is the presence of a methylator phenotype in hepatocarcinogenesis, although it does not seem advantageous to have high levels of microsatellite instability. Methylation also appears to be an early event, suggesting that this may precede cirrhosis. However, these genes have been studied in isolation and global studies of methylator phenotype are required to assess the significance of epigenetic silencing in hepatocarcinogenesis. Based on previous data there are obvious fundamental differences in the mechanisms of hepatic carcinogenesis, with at least two distinct mechanisms of malignant transformation in the liver, related to CIN and CpG island methylation. The reason for these differences and the relative importance of these mechanisms are not clear but likely relate to the etiopathogenesis of HCC. Defining these broad mechanisms is a necessary prelude to determine the timing of events in malignant transformation of the liver and to investigate the role of known risk factors for HCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of genes responsible for the rare cases of familial leukemia may afford insight into the mechanism underlying the more common sporadic occurrences. Here we test a single family with 11 relevant meioses transmitting autosomal dominant acute myelogenous leukemia (AML) and myelodysplasia for linkage to three potential candidate loci. In a different family with inherited AML, linkage to chromosome 21q22.1-22.2 was recently reported; we exclude linkage to 21q22.1-22.2, demonstrating that familial AML is a heterogeneous disease. After reviewing familial leukemia and observing anticipation in the form of a declining age of onset with each generation, we had proposed 9p21-22 and 16q22 as additional candidate loci. Whereas linkage to 9p21-22 can be excluded, the finding of a maximum two-point LOD score of 2.82 with the microsatellite marker D16S522 at a recombination fraction theta = 0 provides evidence supporting linkage to 16q22. Haplotype analysis reveals a 23.5-cM (17.9-Mb) commonly inherited region among all affected family members extending from D16S451 to D1GS289, In order to extract maximum linkage information with missing individuals, incomplete informativeness with individual markers in this interval, and possible deviance from strict autosomal dominant inheritance, we performed nonparametric linkage analysis (NPL) and found a maximum NPL statistic corresponding to a P-value of .00098, close to the maximum conditional probability of linkage expected for a pedigree with this structure. Mutational analysis in this region specifically excludes expansion of the AT-rich minisatellite repeat FRA16B fragile site and the CAG trinucleotide repeat in the E2F-4 transcription factor. The ''repeat expansion detection'' method, capable of detecting dynamic mutation associated with anticipation, more generally excludes large CAG repeat expansion as a cause of leukemia in this family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene encoding the dual-specificity tyrosine-regulated kinase DYRK1A maps to the chromosomal segment HSA21q22.2, which lies within the Down syndrome critical region. The reduction in brain size and behavioral defects observed in mice lacking one copy of the murine homologue Dyrk1A (Dyrk1A+/-) support the idea that this kinase may be involved in monosomy 21 associated mental retardation. However, the structural basis of these behavioral defects remains unclear. In the present work, we have analyzed the microstructure of cortical circuitry in the Dyrk1A+/- mouse and control littermates by intracellular injection of Lucifer Yellow in fixed cortical tissue. We found that labeled pyramidal cells were considerably smaller, less branched and less spinous in the cortex of Dyrk1A+/- mice than in control littermates. These results suggest that Dyrk1A influences the size and complexity of pyramidal cells, and thus their capability to integrate information. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analysed the molecular genetic profiles of breast cancer samples before and after neoadjuvant chemotherapy with combination doxorubicin and cyclophosphamide (AC). DNA was obtained from microdissected frozen breast core biopsies from 44 patients before chemotherapy. Additional samples were obtained before the second course of chemotherapy (D21) and after the completion of the treatment (surgical specimens) in 17 and 21 patients, respectively. Microarray-based comparative genome hybridisation was performed using a platform containing approx5800 bacterial artificial chromosome clones (genome-wide resolution: 0.9 Mb). Analysis of the 44 pretreatment biopsies revealed that losses of 4p, 4q, 5q, 12q13.11–12q13.12, 17p11.2 and 17q11.2; and gains of 1p, 2p, 7q, 9p, 11q, 19p and 19q were significantly associated with oestrogen receptor negativity. 16q21–q22.1 losses were associated with lobular and 8q24 gains with ductal types. Losses of 5q33.3–q4 and 18p11.31 and gains of 6p25.1–p25.2 and Xp11.4 were associated with HER2 amplification. No correlations between DNA copy number changes and clinical response to AC were found. Microarray-based comparative genome hybridisation analysis of matched pretreatment and D21 biopsies failed to identify statistically significant differences, whereas a comparison between matched pretreatment and surgical samples revealed a statistically significant acquired copy number gain on 11p15.2–11p15.5. The modest chemotherapy-driven genomic changes, despite profound loss of cell numbers, suggest that there is little therapeutic selection of resistant non-modal cell lineages.