3 resultados para molybdenum disulphide

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence and location of intramolecular disulphide bonds are a key determinant of the structure and function of proteins. Intramolecular disulphide bonds in proteins have previously been analyzed under the assumption that there is no clear relationship between disulphide arrangement and disulphide concentration. To investigate this, a set of sequence nonhomologous protein chains containing one or more intramolecular disulphide bonds was extracted from the Protein Data Bank, and the arrangements of the bonds, Protein Data Bank header, and Structural Characterization of Proteins fold were analyzed as a function of intramolecular, containing proteins were disulphide bond concentration. Two populations of intramolecular disulphide bond-containing identified, with a naturally occurring partition at 25 residues per bond. These populations were named intramolecular disulphide bond-rich and -poor. Benefits of partitioning were illustrated by three results: (1) rich chains most frequently contained three disulphides, explaining the plateaux in extant disulphide frequency distributions; (2) a positive relationship between median chain length and the number of disulphides, only seen when the data were partitioned-, and (3) the most common bonding pattern for chains with three disulphide bonds was based on the most common for two, only when the data were partitioned. The two populations had different headers, folds, bond arrangements, and chain lengths. Associations between IDSB concentration, IDSB bonding pattern, loop sizes, SCOP fold, and PDB header were also found. From this, we found that intramolecular disulphide bond-rich and -poor proteins follow different bonding rules, and must be considered separately to generate meaningful models of bond formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimethylsulfide (DMS) dehydrogenase catalyses the oxidation of DMS to dimethylsulfoxide. The purified enzyme has three subunits of Mr = 94, 38 and 32 kDa and has an optical spectrum dominated by a b-type cytochrome. The metal ion and nucleotide analysis revealed 0.5 g-atom Mo, 9.8 g-atom Fe and 1.96 mol GMP per tool of enzyme. Taken together, these data indicate that DMS dehydrogenase contains a bis(MGD)Mo cofactor. A comparison of the Nterminal amino acid sequence of DMS dehydrogenase revealed that the Mo-containing ct-subunit was most closely related to the c~-subunits of nitrate reductase (NarG) and selenate reductase (SerA). Similarly, the [~-subunit of DMS dehydrogenase was most closely related to the [3-subunits of nitrate reductase (NarH) and selenate reductase (SerB). Variable temperature X-band EPR spectra (120-2K) of 'as isolated' DMS dehydrogenase showed resonances arising from multiple redox centres, Mo(V), [3Fe-4S] +, [4Fe-4S] ÷. A pH dependent EPR study of the Mo(V) centre in lH20 and 2H20 reveals the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(V)-X and Mo(V)-OH. Between pH6 and 8.2 the dominant species is Mo(V)-OH2 and Mo(V)-X is a minor component. X is probably the anion, chloride. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other Mo(V) centres in metalloproteins showed that it was most similar to the low pH nitrite spectrum of E. coli nitrate reductase (NarGHI). The spin Hamiltonian parameters (2.0158, 1.8870, 1.8620) for the [4Fe-4S] + cluster suggests the presence of histidine (N) coordination to iron in this cluster. It is suggested that this unusual [Fe-S] cluster may be associated with a histidine-cysteine rich sequence at the N-terminus of the ct-subunit of DMS dehydrogenase.