6 resultados para modelo de Angstrom

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha 3 beta 2 and alpha 3 beta 4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr(15)]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr(15)]EpI solved at a resolution of 1.1 Angstrom using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo try direct methods. The [Tyr(15)]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr(15)]EpI, PnIA, PnIB, and MII, have an alpha 4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr(15)]EpI has the same backbone fold as the other alpha 4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr(15)]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr(15)]EpI and MII may have different binding modes for the same receptor subtype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pocilloporin Rtms5 and an engineered variant Rtms5(H146S) undergo distinct color transitions (from blue to red to yellow to colorless) in a pH-dependent manner. pK(a) values of 4.1 and 3.2 were determined for the blue (absorption lambda(max), 590 nm) to yellow (absorption lambda(max), similar to 453 nm) transitions of Rtms5 and Rtms5H(146). The pK(a) for the blue-yellow transition of Rtms5H(146S) increased by 1.4 U in the presence of 0.1 M KI, whereas the pK(a) for the same transition of Rtms5 was relatively insensitive to added halides. To understand the structural basis for these observations, we have determined to 2.0 A resolution the crystal structure of a yellow form of Rtms5(H146S) at pH 3.5 in the presence of iodide. Iodide was found occupying a pocket in the structure with a pH of 3.5, forming van der Waals contacts with the tyrosyl moiety of the chromophore. Elsewhere, it was determined that this pocket is occupied by a water molecule in the Rtms5(H141S) structure (pH 8.0) and by the side chain of histidine 146 in the wild-type Rtms5 structure. Collectively, our data provide an explanation for the observed linkage between color transitions for Rtms5(H146S) and binding to halides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conotoxins are small, cysteine-rich peptides isolated from the venom of Conus spp. of predatory marine snails, which selectively target specific receptors and ion channels critical to the functioning of the neuromuscular system. alpha-Conotoxins PnIA and PnIB are both 16-residue peptides (differing in sequence at only two positions) isolated from the molluscivorous snail Conus pennaceus. In contrast to the muscle-selective alpha-conotoxin GI from Conus geographus, PnIA and PnIB block the neuronal nicotinic acetylcholine receptor (nAChR). Here, we describe the crystal structure of PnIB, solved at a resolution of 1.1 Angstrom and phased using the Shake-and-Bake direct methods program. PnIB crystals are orthorhombic and belong to the space group P2(1)2(1)2(1) with the following unit cell dimensions: a = 14.6 Angstrom, b = 26.1 Angstrom, and c = 29.2 Angstrom. The final refined structure of alpha-conotoxin PnIB includes all 16 residues plus 23 solvent molecules and has an overall R-factor of 14.7% (R-free of 15.9%). The crystal structures of the alpha-conotoxins PnIB and PnIA are solved from different crystal forms, with different solvent contents. Comparison of the structures reveals them to be very similar, showing that the unique backbone and disulfide architecture is not strongly influenced by crystal lattice constraints or solvent interactions. This finding supports the notion that this structural scaffold is a rigid support for the presentation of important functional groups. The structures of PnIB and PnIA differ in their shape and surface charge distribution from that of GI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CcmG is unlike other periplasmic thioredoxin (TRX)like proteins in that it has a specific reducing activity in an oxidizing environment and a high fidelity of interaction. These two unusual properties are required for its role in c-type cytochrome maturation. The crystal structure of CcmG reveals a modified TRX fold with an unusually acidic active site and a groove formed from two inserts in the fold. Deletion of one of the groove-forming inserts disrupts c-type cytochrome formation. Two unique structural features of CcmG-an acidic active site and an adjacent groove-appear to be necessary to convert an indiscriminately binding scaffold, the TRX fold, into a highly specific redox protein.