144 resultados para modelling of dynamics
em University of Queensland eSpace - Australia
Resumo:
We present the finite element simulations of reactive mineral carrying fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for Load, zinc and iron minerals in the regime of temperature-gradient-driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore-fluid velocity and the equilibrium concentration of this particular kind of mineral Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral-carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
We present the first mathematical model on the transmission dynamics of Schistosoma japonicum. The work extends Barbour's classic model of schistosome transmission. It allows for the mammalian host heterogeneity characteristic of the S. japonicum life cycle, and solves the problem of under-specification of Barbour's model by the use of Chinese data we are collecting on human-bovine transmission in the Poyang Lake area of Jiangxi Province in China. The model predicts that in the lake/marshland areas of the Yangtze River basin: (1) once-early mass chemotherapy of humans is little better than twice-yearly mass chemotherapy in reducing human prevalence. Depending on the heterogeneity of prevalence within the population, targeted treatment of high prevalence groups, with lower overall coverage, can be more effective than mass treatment with higher overall coverage. Treatment confers a short term benefit only, with prevalence rising to endemic levels once chemotherapy programs are stopped (2) depending on the relative contributions of bovines and humans, bovine treatment can benefit humans almost as much as human treatment. Like human treatment, bovine treatment confers a short-term benefit. A combination of human and bovine treatment will dramatically reduce human prevalence and maintains the reduction for a longer period of time than treatment of a single host, although human prevalence rises once treatment ceases; (3) assuming 75% coverage of bovines, a bovine vaccine which acts on worm fecundity must have about 75% efficacy to reduce the reproduction rate below one and ensure mid-term reduction and long-term elimination of the parasite. Such a vaccination program should be accompanied by an initial period of human treatment to instigate a short-term reduction in prevalence, following which the reduction is enhanced by vaccine effects; (4) if the bovine vaccine is only 45% efficacious (the level of current prototype vaccines) it will lower the endemic prevalence, but will not result in elimination. If it is accompanied by an initial period of human treatment and by a 45% improvement in human sanitation or a 30% reduction in contaminated water contact by humans, elimination is then possible. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Experimental aerodynamic studies of the flows around new aerocapture spacecraft configurations are presently being done in the superorbital expansion tubes at The University of Queensland. Short duration flows at speeds of 10--13 km/s are produced in the expansion tube facility and are then applied to the model spacecraft. Although high-temperature effects, such as molecular dissociation, have long been a part of the computational modelling of the expansion tube flows for speeds below 10 km/s, radiation may now be a significant mechanism of energy transfer within the shock layer on the model. This paper will study the coupling of radiation energy transport for an optically thin gas to the flow dynamics in order to obtain accurate predictions of thermal loads on the spacecraft. The results show that the effect of radiation on the flowfields of subscale models for expansion tube experiments can be assessed by measurements of total heat transfer and radiative heat transfer.
Resumo:
Substantial amounts of nitrogen (N) fertiliser are necessary for commercial sugarcane production because of the large biomass produced by sugarcane crops. Since this fertiliser is a substantial input cost and has implications if N is lost to the environment, there are pressing needs to optimise the supply of N to the crops' requirements. The complexity of the N cycle and the strong influence of climate, through its moderation of N transformation processes in the soil and its impact on N uptake by crops, make simulation-based approaches to this N management problem attractive. In this paper we describe the processes to be captured in modelling soil and plant N dynamics in sugarcane systems, and review the capability for modelling these processes. We then illustrate insights gained into improved management of N through simulation-based studies for the issues of crop residue management, irrigation management and greenhouse gas emissions. We conclude by identifying processes not currently represented in the models used for simulating N cycling in sugarcane production systems, and illustrate ways in which these can be partially overcome in the short term. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance. (c) 2006 Elsevier B.V. All rights reserved.
Modelling carbon dynamics within tropical rainforest environments: Using the 3-PG and process models
Resumo:
A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.