41 resultados para microwell arrays

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a self-similar array model, we systematically investigated the axial Young's modulus (Y-axis) of single-walled carbon nanotube (SWNT) arrays with diameters from nanometer to meter scales by an analytical approach. The results show that the Y-axis of SWNT arrays decreases dramatically with the increases of their hierarchy number (s) and is not sensitive to the specific size and constitution when s is the same, and the specific Young's modulus Y-axis(s) is independent of the packing configuration of SWNTs. Our calculations also show that the Y-axis of SWNT arrays with diameters of several micrometers is close to that of commercial high performance carbon fibers (CFs), but the Y-axis(s) of SWNT arrays is much better than that of high performance CFs. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equivalent unit cell waveguide approach (WGA) is described to study the behavior of a multilayer reflect array of variable-size patches/dipoles, The approach considers normal incidence of a plane wave on an infinite periodic array of identical radiating elements and introduces an equivalent unit cell waveguide to obtain the reflection coefficient. A field matching technique and method of moments (MoM) is used to determine fields in different layers of the equivalent waveguide. Good agreements for the phase of the reflection coefficient between the proposed model and those published in selected literatures are obtained. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the design of free-space optical interconnects (FSOIs) based on arrays of vertical-cavity surface-emitting lasers (VCSELs), microlenses, and photodetectors. We explain the effect of the modal structure of a multimodeVCSEL beam on the performance of a FSOI with microchannel architecture. A Gaussian-beam diffraction model is used in combination with the experimentally obtained spectrally resolved VCSEL beam profiles to determine the optical channel crosstalk and the signal-to-noise ratio (SNR) in the system. The dependence of the SNR on the feature parameters of a FSOI is investigated. We found that the presence of higher-order modes reduces the SNR and the maximum feasible interconnect distance. We also found that the positioning of a VCSEL array relative to the transmitter microlens has a significant impact on the SNR and the maximum feasible interconnect distance. Our analysis shows that the departure from the traditional confocal system yields several advantages including the extended interconnect distance and/or improved SNR. The results show that FSOIs based on multimode VCSELs can be efficiently utilized in both chip-level and board-level interconnects. (C) 2002 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multibody dynamics of a satellite in circular orbit, modeled as a central body with two hinge-connected deployable solar panel arrays, is investigated. Typically, the solar panel arrays are deployed in orbit using preloaded torsional springs at the hinges in a near symmetrical accordion manner, to minimize the shock loads at the hinges. There are five degrees of freedom of the interconnected rigid bodies, composed of coupled attitude motions (pitch, yaw and roll) of the central body plus relative rotations of the solar panel arrays. The dynamical equations of motion of the satellite system are derived using Kane's equations. These are then used to investigate the dynamic behavior of the system during solar panel deployment via the 7-8th-order Runge-Kutta integration algorithms and results are compared with approximate analytical solutions. Chaotic attitude motions of the completely deployed satellite in circular orbit under the influence of the gravity-gradient torques are subsequently investigated analytically using Melnikov's method and confirmed via numerical integration. The Hamiltonian equations in terms of Deprit's variables are used to facilitate the analysis. (C) 2003 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with assessing the interference rejection capabilities of linear and circular array of dipoles that can be part of a base station of a code-division multiple-access cellular communication system. The performance criteria for signal-to-interference ratio (SIR) improvement employed in this paper is the spatial interference suppression coefficient. We first derive an expression for this figure of merit and then analyze and compare the SIR performance of the two types of arrays. For a linear array, we quantitatively assess the degradation in SIR performance, as we move from array broadside to array end-fire direction. In addition, the effect of mutual coupling is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum circuit implementing 5-qubit quantum-error correction on a linear-nearest-neighbor architecture is described. The canonical decomposition is used to construct fast and simple gates that incorporate the necessary swap operations allowing the circuit to achieve the same depth as the current least depth circuit. Simulations of the circuit's performance when subjected to discrete and continuous errors are presented. The relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis on determining the concatenated error correction threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a self-similar array model of single-walled carbon nanotubes (SWNTs), the pore structure of SWNT bundles is analyzed and compared with that obtained from the conventional triangular model and adsorption experimental results. In addition to the well known cylindrical endo-cavities and interstitial pores, two types of newly defined pores with diameters of 2-10 and 8-100 nm are proposed, inter-bundle pores and inter-array pores. In particular, the relationship between the packing configuration of SWNTs and their pore structures is systematically investigated. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of monolayer films of free base 5,10,15,20-tetrapyridylporphinato (TPyP) and 5,10,15,20-tetrapyridylporphinato zinc(II) (ZnTPyP) on pure water, 0.1 M CdCl2, and 0.1 M CuCl2 subphases was investigated by surface pressure-area isotherms, specular X-ray reflectometry, and polarized total reflection X-ray absorption spectroscopy (PTRXAS). Surface pressure-area isotherms showed significant differences in the area per molecule on pure water compared to that on salt subphases, with a marked increase in the area observed on the salt solutions. This behavior was noted for both forms of the porphyrin and both salts investigated. Modeling of specular X-ray reflectometry data indicated that thinner and more electron dense layers on salt subphases best fit the observed profiles. These data suggest that the porphyrin macrocycle is oriented parallel to the interface on salt subphases and takes on a tilted conformation on pure water. In the case of ZnTPyP, PTRXAS was used to determine the orientation of the porphyrin moiety relative to the surface and to probe the coordination of the central Zn ion. In agreement with the pressure-area isotherms and reflectometry, the PTRXAS data indicate a change in orientation on the salt subphases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.