6 resultados para microstructure optical fibers

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fiber, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibers. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optical quantum memory scheme using two narrow-linewidth cavities and some optical fibers is proposed. The cavities are connected via an optical fiber, and the gap of each cavity can be adjusted to allow photons with a certain bandwidth to transmit through or reflect back. Hence, each cavity acts as a shutter and the photons can be stored in the optical fiber between the cavities at will. We investigate the feasibility of using this device in storing a single photon. We estimate that with current technology storage of a photon qubit for up to 50 clock cycles (round trips) could be achieved with a probability of success of 85%. We discuss how this figure could be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-layer hydrogen storage thin films with Mg and MmNi(3.5)(CoAlMn)(1.5) (here Mm denotes La-rich mischmetal) as alternative layers were prepared by direct current magnetron sputtering. Transmission electron microscopy investigation shows that the microstructure of the MmNi(3.5)(CoAlMn)(1.5) and Mg layers are significantly different although their deposition conditions are the same. The MmNi(3.5)(CoAlMn)(1.5) layer is composed of two regions: one is an amorphous region approximately 4 nm thick at the bottom of the layer and the other is a nanocrystalline region on top of the amorphous region. The Mg layer is also composed of two regions: one is a randomly orientated nanocrystalline region 50 nm thick at the bottom of the layer and the other is a columnar crystallite region on top of the nanocrystalline region. These Mg columnar crystallites have their [001] directions parallel to the growth direction and the average lateral size of these columnar crystallites is about 100 nm. A growth mechanism of the multi-layer thin films is discussed based on the experiment results. Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present results of the internal structure (pore size and pore wall thickness distributions) of a series of activated carbon fibers with different degrees of burn-off, determined from interpretation of argon adsorption data at 87 K using infinite and finite wall thickness models. The latter approach has recently been developed in our laboratory. The results show that while the low bun-off samples have nearly uniform pore size (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soldering alloys based oft the Sn-Cu alloy system are amongst the most favourable lead-free alternatives due to a range of attractive properties. Trace additions of Ni have been found to significantly improve the soldering characteristics of these alloys (reduced bridging etc.). This paper examines the mechanisms underlying the improvement in soldering properties of Sn-0.7 mass%Cu eutectic alloys modified with concentrations of Ni ranging front 0 to 1000 ppm. The alloys were investigated by thermal analysis during solidification, as well as optical/SEM microanalyses of fully solidified samples anti samples quenched during solidification. It is concluded that Ni additions dramatically alter the nucleation patterns and solidification behaviour of the Sn-Cu6Sn5 eutectic anti that these changes are related to the superior soldering characteristics of the Ni-modified Sn-0.7 mass%Cu alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method for characterizing microscopic optical force fields. Two dimensional vector force maps are generated by measuring the optical force applied to a probe particle for a grid of particle positions. The method is used to map Out the force field created by the beam from a lensed fiber inside a liquid filled microdevice. We find transverse gradient forces and axial scattering forces on the order of 2 pN per 10 mW laser power which are constant over a considerable axial range (> 35 mu m). These findings suggest Future useful applications of lensed fibers for particle guiding/sorting. The propulsion of a small particle at a constant velocity of 200 mu m s(-1) is shown.