73 resultados para michael-addition-reactions
em University of Queensland eSpace - Australia
Resumo:
The potential energy surfaces for the reactions of atomic oxygen in its ground electronic state, O(P-3), with the olefins: CF2=CCl2 and CF2=CF - CF3, have been characterized using ab initio molecular orbital calculations. Geometry optimization and vibrational frequency calculations were performed for reactants, transition states and products at the MP2 and QCISD levels of theory using the 6-31G(d) basis set. This database was then used to calculate the rate constants by means of Transition-State-Theory. To obtain a better reference and to test the reliability of the activation barriers we have also carried out computations using the CCSD(T)(fc)/6-311Gdagger, MP4(SDQ)(fc)/CBSB4 and MP2(fc)/CBSB3 single point energy calculations at both of the above levels of theory, as well as with the composite CBS-RAD procedure ( P. M. Mayer, C. J. Parkinson, D. M. Smith and L. Radom, J. Chem. Phys., 1998, 108, 604) and a modi. cation of this approach, called: CBS-RAD( MP2, MP2). It was found that the kinetic parameters obtained in this work particularly with the CBS-RAD ( MP2, MP2) procedure are in reasonable agreement with the experimental values. For both reactions it is found that the channels leading to the olefin double-bond addition predominates with respect to any other reaction pathway. However, on account of the different substituents in the alkenes we have located, at all levels of theory, two transition states for each reaction. Moreover, we have found that, for the reactions studied, a correlation exists between the activation energies and the electronic structure of the transition states which can explain the influence of the substituent effect on the reactivity of the halo-olefins.
Resumo:
The substitution reactions of SMe2 by phosphines (PMePh2, PEtPh2, PPh3, P(4-MeC6H4)(3), P(3-MeC6H4)(3), PCy3) on Pt-IV complexes having a cyclometalated imine ligand, two methyl groups in a cis-geometrical arrangement, a halogen, and a dimethyl sulfide as ligands, [Pt(CN)(CH3)(2)(X)(SMe2)], have been studied as a function of temperature, solvent, and electronic and steric characteristics of the phosphines and the X and CN ligands. In all cases, a limiting dissociative mechanism has been found, where the dissociation of the SMe2 ligand corresponds to the rate-determining step. The pentacoordinated species formed behaves as a true pentacoordinated Pt-IV compound in a steady-state concentration, given the solvent independence of the rate constant. The X-ray crystal structures of two of the dimethyl sulfide complexes and a derivative of the pentacoordinate intermediate have been determined. Differences in the individual rate constants for the entrance of the phosphine ligand can only be estimated as reactivity ratios. In all cases an effect of the phosphine size is detected, indicating that an associative step takes place from the pentacoordinated intermediate. The nature of the (CN) imine and X ligands produces differences in the dimethyl sulfide dissociation reactions rates, which can be quantified by the corresponding DeltaS double dagger values (72, 64, 48, 31, and 78 J K-1 mol(-1) for CN/X being C6H4CHNCH2C6H5/Br, C6H4CHNCH2-(2,4,6-(CH3)(3))C6H2/Br, C6H4CHNCH2C6H5/Cl, C6Cl4CHNCH2C6H5/Cl, and C6W4CH2NCHC6H5/ Pr, respectively). As a whole, the donor character of the coordinated C-aromatic and X atoms have the greatest influence on the dissociativeness of the rate-determining step.
Resumo:
Previous experimental studies showed that the presence of O-2 greatly enhances NO-carbon reaction while it depresses N2O-carbon reaction on carbon surfaces. A popular explanation for the rate increase is that the addition of O-2 results in a large number of reactive carbon-oxygen complexes, and decomposition of these complexes produces many more active sites. The explanation for the latter is that excess O-2 simply blocks the active sites, thus reducing the rate of N2O-carbon reaction. The contradiction is that O-2 can also occupy active sites in NO-carbon reaction and produce active sites in N2O-carbon reduction. By using ab initio calculation, we find that the opposite roles of O-2 are caused by the different manners of N2O and NO adsorption on the carbon surface. In the presence of excess O-2, most Of the active sites are occupied by oxygen groups. In the competition for the remaining active sites, NO is more likely to chemisorb in the form of NO2 and NO chemisorption is mon thermodynamically favorable than O-2 chemisorption. By contrast, the presence of excess O-2 makes N2O chemisorption much less thermally stable either on the consecutive edge sites or edge sites isolated by semiquinone oxygen. A detailed analysis and discussion of the reaction mechanism of N-2 formation from NO- and N2O-carbon reaction in the presence of O-2 is presented in this paper.
Resumo:
Extensive research conducted in the occupational stress literature has failed to provide convincing support for the stress-buffering effects of work control on employee adjustment. Drawing on research conducted in the laboratory context, it was proposed that the stress-buffering effects of work control on employee adjustment would be more marked at high, rather than low, levels of self-efficacy. In a sample of 100 customer service representatives, a significant three-way interaction among role conflict, work control and self-efficacy (measured at Time 1) was observed on (low) depersonalization (measured at Time 2). Consistent with expectations, work control reduced the negative effects of work stress on this outcome measure only for employees who perceived high levels of self-efficacy at work. In addition, there was evidence to suggest that self-efficacy moderated the main effects of work control on job satisfaction and somatic health. These findings are discussed hi terms of their theoretical contribution to the job strain model, and also in relation to workplace interventions designed to improve levels of employee adjustment.
Resumo:
The reaction of the bis(1,2-diamine) copper(II) complexes of racemic propane-1,2-diamine (pn) and 2-methylpropane-1,2-diamine (dmen) with formaldehyde and nitroethane in methanol under basic conditions yields minor macrocyclic condensation products in addition to the major acyclic products. Where C-pendant methyl groups on the pair of coordinated diamines are in cis dispositions, the first -NH-CH2-C(CH3)(NO2)-CH2-NH- ring formation occurs at amine pairs distant from these C-methyl substituents, and further reaction to yield a macrocycle is not observed. However, where the C-methyl substituents are in trans dispositions, the chemistry proceeds to yield the macrocycle. Commencing with pn, trans-(6,13-diammonio-2,6,9,13-tetramethyl-1,4,7,10-tetraazacyclotetradecane)copper(II) perchlorate formed and crystallized in the space group P2(1)/n, with a 9.782(2), b 9.2794(6), c 17.017(4) Angstrom, beta 103.24(1)degrees. The copper ion is found in a square-planar environment, with the two methyl groups of the pn residues and the pairs of introduced pendant groups all in trans arrangements.
Resumo:
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
Background: In the presence of dNTPs, intact HIV-1 virions are capable of reverse transcribing at least part of their genome, a process known as natural endogenous reverse transcription (NERT). PCR analysis of virion DNA produced by NERT revealed that the first strand transfer reaction (1stST) was inefficient in intact virions, with minus strand (-) strong stop DNA (ssDNA) copy numbers up to 200 times higher than post-1stST products measured using primers in U3 and U5. This was in marked contrast to the efficiency of 1stST observed in single-round cell infection assays, in which (-) ssDNA and U3-U5 copy numbers were indistinguishable. Objectives: To investigate the reasons for the discrepancy in first strand transfer efficiency between intact cell-free virus and the infection process. Study design: Alterations of both NERT reactions and the conditions of cell infection were used to test whether uncoating and/or entry play a role in the discrepancy in first strand transfer efficiency. Results and Conclusions: The difference in 1stST efficiency could not be attributed simply to viral uncoating, since addition of very low concentrations of detergent to NERT reactions removed the viral envelope without disrupting the reverse transcription complex, and these conditions resulted in no improvement in 1stST efficiency. Virus pseudotyped with surface glycoproteins from either vesicular stomatitis virus or amphotrophic murine leukaemia virus also showed low levels of 1stST in low detergent NERT assays and equivalent levels of (-) ssDNA and 1stST in single-round infections of cells, demonstrating that the gp120-mediated infection process did not select for virions capable of carrying out 1stST. These data indicate that a post-entry event or factor may be involved in efficient HIV-1 reverse transcription in vivo. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The kinetics of chain reactions of octanedithiol with styrene, thermally initiated with TX29B50 (a 50:50 wt% solution of TX29 diperoxy initiator in a phthalate plasticizer), have been studied over a range of initiator concentrations, a range of mixture formulations and a range of temperatures. This system has been investigated as a model system for the reactions of polyfunctional thiols with divinyl benzene. The reactions have been shown to follow first-order kinetics for both the thiol and the ene species and to be characterized by a dependence on the initiator concentration to the power of one half. The kinetic rate parameters have been shown to adhere to Arrhenius behaviour. A kinetic model for the chain reactions for this system has been proposed. (C) 2003 Society of Chemical Industry.
Resumo:
To study the phase relations in the Bi-2212 and Yb2O3 system, Bi2Sr2Ca1-xYbxCu2Oy thick films are prepared by partial melt processing via an intermediate reaction between Bi-2212 and Yb2O3. When Bi-2212 and Yb2O3 are partially melted and then slowly cooled, solid solutions of Bi2Sr2Ca1-xYbxCu2Oy form by reactions between liquid and solid phases which contain Yb. Following these reactions, Ca is partially replaced in Bi-2212 matrix and participates in the formation of secondary phases, such as Bi-free, (Ca, Sr)O-x and CaO. Variation of the Bi-2212-Yb2O3 ratios and processing parameters changes the balance between the phases and leads to different Yb:Ca ratios in the Bi-2212 matrix of processed thick films. When the partial melting process is optimized for each sample to minimize the growth of secondary phases, x = 0.42-0.46 for the samples prepared at pO(2) = 0.01 atm, x = 0.24-0.29 for the samples prepared at pO(2) = 0.21 atm, x = 0.18-0.23 for the samples prepared at pO(2) = 0.99 atm are obtained regardless to the starting compositions. It is found that superconducting properties of Bi2Sr2Ca1-xYbxCu2Oy thick films strongly depend on the processing conditions, because the conditions result in different Yb content in the Bi-2212 matrix and the volume fraction of the secondary phases. The highest T-c(0) of 77, 90 and 91 K were obtained for the samples processed at 0.01, 0.21 and 0.99 atm of O-2, respectively.
Resumo:
The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.
Resumo:
Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.