101 resultados para metal-organic precursors

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly lattice mismatched (7.8%) GaAs/GaSb nanowire heterostructures were grown by metal-organic chemical vapor deposition and their detailed structural characteristics were determined by electron microscopy. The facts that (i) no defects have been found in GaSb and its interfaces with GaAs and (ii) the lattice mismatch between GaSb/GaAs was fully relaxed suggest that the growth of GaSb nanowires is purely governed by the thermodynamics. The authors believe that the low growth rate of GaSb nanowires leads to the equilibrium growth. (c) 2006 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the interaction of ethylene and ethane with a Cu-tricarboxylate complex and show that at low loadings the lighter molecule has a higher binding energy as a result of an increased interaction with the framework Cu and stronger hydrogen bonding with the basic framework oxygens. This leads to selective adsorption of ethylene by a factor of about 2 at low pressure, which is overcome by the stronger van der Waals interaction of ethane at high loadings, explaining recent literature data. The results suggest the possibility of separation of light hydrocarbons at low pressures or in trace amounts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesoporous Mobil catalytic materials of number 41 (MCM-41) silica was chemically modified using both inorganic and organic precursors and characterized using the techniques, XRD, XPS, MAS NMR, FTIR, W-Vis, and physical adsorption of nitrogen, hydrocarbons (hexane, benzene, acetone, and methanol) and water vapor. Modification using organic reagents was found to result in a significant loss in porosity and a shape change of surface properties (increased hydrophobicity and decreased acidity). With inorganic modifying reagents, the decrease in porosity was also observed while the surface properties were not significantly altered as reflected by the adsorption isotherms of organics and water vapors. Chemical modifications can greatly improve the hydrothermal stability of MCM-41 material because of the enhanced surface hydrophobicity (with organic modifiers) or increased pore wall thickness (with inorganic modifiers). (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The storage of gases in porous adsorbents, such as activated carbon and carbon nanotubes, is examined here thermodynamically from a systems viewpoint, considering the entire adsorption-desorption cycle. The results provide concrete objective criteria to guide the search for the Holy Grail adsorbent, for which the adsorptive delivery is maximized. It is shown that, for ambient temperature storage of hydrogen and delivery between 30 and 1.5 bar pressure, for the optimum adsorbent the adsorption enthalpy change is 15.1 kJ/mol. For carbons, for which the average enthalpy change is typically 5.8 kJ/mol, an optimum operating temperature of about 115 K is predicted. For methane, an optimum enthalpy change of 18.8 kJ/mol is found, with the optimum temperature for carbons being 254 K. It is also demonstrated that for maximum delivery of the gas the optimum adsorbent must be homogeneous, and that introduction of heterogeneity, such as by ball milling, irradiation, and other means, can only provide small increases in physisorption-related delivery for hydrogen. For methane, heterogeneity is always detrimental, at any value of average adsorption enthalpy change. These results are confirmed with the help of experimental data from the literature, as well as extensive Monte Carlo simulations conducted here using slit pore models of activated carbons as well as atomistic models of carbon nanotubes. The simulations also demonstrate that carbon nanotubes offer little or no advantage over activated carbons in terms of enhanced delivery, when used as storage media for either hydrogen or methane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interlayer magnetoresistance of the quasi-two-dimensional metal alpha-(BEDT-TTF)(2)KHg(SCN)(4) is considered. In the temperature range from 0.5 to 10 K and for fields up to 10 T the magnetoresistance has a stronger temperature dependence than the zero-field resistance. Consequently Kohler's rule is not obeyed for any range of temperatures or fields. This means that the magnetoresistance cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Possible explanations for the violations of Kohler's rule are considered, both within the framework of semiclassical transport theory and involving incoherent interlayer transport. The issues considered are similar to those raised by the magnetotransport of the cuprate superconductors. [S0163-1829(98)13219-8].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic microcavity light-emitting diodes typically exhibit a blueshift of the emitting wavelength with increasing viewing angle. We have modeled the shift of the resonance wavelength for several metal mirrors. Eight metals (Al, Ag, Cr, Ti, Au, Ni, Pt, and Cu) have been considered as top or bottom mirrors, depending on their work functions. The model fully takes into account the dependence of the phase change that occurs on reflection on angle and wavelength for both s and p polarization, as well as on dispersion in the organic layers. Different contributions to the emission wavelength shift are discussed. The influence of the thickness of the bottom mirror and of the choice and thickness of the organic materials inside the cavity has been investigated. Based on the results obtained, guidelines for a choice of materials to reduce blueshift; are given. (C) 2002 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The catalytic activities of Ni/gamma-Al2O3 catalysts prepared using different nickel precursor compounds were studied for the reaction of methane reforming with CO2. It is found that the nickel precursor employed in the catalyst preparation plays an important role. The catalyst based on nickel nitrate exhibited higher catalytic activity and stability over a 24-h test period than the other two catalysts derived from nickel chloride and nickel acetylacetonate. A comprehensive characterisation of the catalysts showed that the weak interaction between Ni particles and gamma-Al2O3 resulted in more active sites on Ni nitrate-derived Ni/gamma-Al2O3 catalyst. Coking studies showed that carbon deposition on Ni catalysts derived from inorganic precursors (nitrate and chloride) were more severe than on the organic precursor-derived catalyst. However, the Ni nitrate-derived catalyst was found to have the highest stability (or lowest deactivation rate) mainly due to the active carbon species (-C-C-) of the resulting graphitic structure and their close contact with the metal particles. In contrast, the carbon formed on Ni-AA catalyst (from Ni acetylacetonate) is dominated by inactive -CO-C- species, thus leading to a rapid accumulation of carbon in this catalyst and more severe deactivation. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how the coupling between the phonons and electrons in a strongly correlated metal can result in phonon frequencies that have a nonmonotonic temperature dependence. Dynamical mean-field theory is used to study the Hubbard-Holstein model that describes the kappa-(BEDT-TTF)(2)X [where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene)] family of superconducting molecular crystals. The crossover with increasing temperature from a Fermi liquid to a bad metal produces phonon anomalies that are relevant to recent Raman scattering and acoustic experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthetic organic compound λ(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe3+ magnetic ions in these phase transition. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe3+ ions are replaced by non-magnetic Ga3+ ions. We show how Hc can be extracted from the observed splitting of the Shybnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials. We also show that at high fields the spin fluctuations of the localized spins are not important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic petrology supported by electron microscopical and micro-analytical techniques was applied to organic matter in Proterozoic sediments to better understand hydrothermal processes responsible for ore-grade mineralisation. It was shown that organic maturation was not only closely linked to the geological history of the sediments, but also highlighted heat transfer by convection as differentiated from conduction solely through sediment burial and step-wise subsidence. Water-rock ratios effect organic maturation in hydrothermal systems, and erratic reflectance profiles are indicators of convective heat transfer. Identification and characterisation of organic materials in terms of source rock and migrated hydrocarbons was shown to be a powerful tool in reconstructing the thermal history of sediments, identifying hydrothermal episodes, fluid pathways and heat source in the northern Australian Proterozoic basins. Higher reflectance of organic matter towards the central parts of the Mount Isa Basin and some of the most northerly parts point to proximity to higher heat flow at times, in contrast to relatively low temperatures prevailing in the western parts of the basin, next to the Murphy Inlier. A close correlation shown between peak organic reflectance values and super-sequence boundaries farther highlighted the valuable information to be gained from organic petrology, by allowing the separation of processes responsible for metal dissolution and transportation from those inducing precipitation. (C) 2001 Elsevier Science B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosynthetic origins of the isocyanide and isothiocyanate groups in 9-isocyanop upukeanane (2) and 9-isothiocyanato-pupukeanane (3) are investigated by incorporation of [C-14]-labelled advanced precursors into the sponge Axinyssa n.sp. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials K-(BEDT-TTF)(2)X, The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase diagrams for each model. The Sp(N) :antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite N are also discussed. For parameters relevant to Cs2CuCl4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap, A metal-insulator transition occurs at intermediate values of the interaction strength.