19 resultados para mercato elettrico trading CEE Polonia
em University of Queensland eSpace - Australia
Resumo:
Foreign exchange trading has emerged recently as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. A major issue for traders in the deregulated Foreign Exchange Market is when to sell and when to buy a particular currency in order to maximize profit. This paper presents novel trading strategies based on the machine learning methods of genetic algorithms and reinforcement learning.
Resumo:
Whilst financial markets are not strangers to academic and professional scrutiny, they still remain epistemologically contested. For individuals trying to profit by trading shares, this uncertainty is manifested in the varying trading styles which they are able to utilize. This paper examines one trading style commonly used by non-professional share traders-technical analysis. Using research data obtained from individuals who identify themselves as technical analysts, this paper seeks to explain the ways in which individuals understand and use the technique in an attempt to make trading profits. In particular, four distinct subcategories or ideal types of technical analysis can be identified, each providing an alternative perceptual form for participating in financial markets. Each of these types relies upon a particular method for seeing the market, these visualization techniques highlighting the existence of forms of professional vision (as originally identified by Goodwin (1994)) in the way the trading styles are comprehended and acted upon.
Resumo:
Foreign Exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. In this paper we try to create such a system using Machine learning approach to emulate trader behaviour on the Foreign Exchange market and to find the most profitable trading strategy.
Resumo:
Foreign exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process is very helpful. In this paper, we try to create such a system with a genetic algorithm engine to emulate trader behaviour on the foreign exchange market and to find the most profitable trading strategy.