3 resultados para meningococcal

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pilin is the major subunit of the essential virulence factor pili and is glycosylated at Ser63. In this study we investigated the gene pglI to determine whether it is involved in the biosynthesis of the pilin-linked glycan of Neisseria meningitidis strain C311#3. A N. meningitidis C311#3pglI mutant resulted in a change of apparent molecular weight in SDS-PAGE and altered binding of antisera, consistent with a role in the biosynthesis of the pilin-linked glycan. These data, in conjunction with homology with well-characterised acyltransferases suggests a specific role for pglI in the biosynthesis of the basal 2,4-diacetamido-2,4,6-trideoxyhexose residue of the pilin-linked glycan. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meningococcal disease is a rare but potential killer in both adults and children. Community acquired meningococcal disease is caused by a variety of serogroups of Neisseria meningitides. Of the five main subgroups, A, B, C, W135 and Y, serogroups, A and Y are rarely identified in Australia. Alternatively, Serogroup B accounts for the highest number of cases followed by serogroup C strains. Meningococcal infection causes two distinct clinical profiles, though dual presentations are not uncommon. The first, meningitis presenting alone, is the more common form of infection and requires urgent but not immediate medical treatment. Conversely the second presentation, meningococcal septicaemia, is considered a medical emergency. In Queensland, careful and detailed consideration of the evidence for introduction of benzyl penicillin for the prehospital treatment of meningococcal septicaemia has been conducted. Notwithstanding the seriousness of the septicaemic presentation, these reviews have resulted in the decision not to introduce this drug in the ambulance service at the time. This paper describes the reasoning behind these decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the conservation and antibody accessibility of inner core epitopes of Neisseria meningitidis lipopolysaccharide (LPS) because of their potential as vaccine candidates. An immunoglobulin G3 murine monoclonal antibody (MAb), designated MAb B5, was obtained by immunizing mice with a galE mutant of N. meningitidis H44/76 (B.15.P1.7,16 immunotype L3). We have shown that MAb B5 can bind to the core LPS of wild-type encapsulated MC58 (B.15.P1.7,16 immunotype L3) organisms in vitro and ex vivo. An inner core structure recognized by MAb B5 is conserved and accessible in 26 of 34 (76%) of group B and 78 of 112 (70%) of groups A, C, W, X, Y, and Z strains. N. meningitidis strains which possess this epitope are immunotypes in which phosphoethanolamine (PEtn) is linked to the 3-position of the beta-chain heptose (HepII) of the inner core. In contrast, N. neningitidis strains lacking reactivity with MAb B5 have an alternative core structure in which PEtn is linked to an exocyclic position (i.e., position 6 or 7) of HepII (immunotypes L2, L4, and L6) or is absent (immunotype L5). We conclude that MAb B5 defines one or more of the major inner core glycoforms of N. meningitidis LPS. These findings support the possibility that immunogens capable of eliciting functional antibodies specific to inner core structures could be the basis of a vaccine against invasive infections caused by N. meningitidis.