6 resultados para membrane diffusion
em University of Queensland eSpace - Australia
Resumo:
Two water quality monitoring strategies designed to sample hydrophobic organic contaminants have been applied and evaluated across an expected concentration gradient in PAHs in the Moreton region. Semipermeable membrane devices (SPMDs) that sequester contaminants via passive diffusion across a membrane were used to evaluate the concentration of PAHs at four and five sites in spring and summer 2001/2002, respectively. In addition, induction of hepatic cytochrome P4501, EROD activity, in yellowfin bream, Acanthopagrus australis, captured in the vicinity of SPMD sampling sites following deployment in summer was used as a biomarker of exposure to PAHs and related chemicals. SPMDs identified a clear and reproducible gradient in PAH contamination with levels increasing from east to west in Moreton Bay and upstream in the Brisbane River. The highest PAH concentrations expressed as B(a)P-toxicity equivalents (TEQs) were found in urban areas, which were also furthest upstream and experienced the least flushing. Cytochrome P4501 induction in A. australis was similar at all sites. The absence of clear trends in EROD activity may be attributable to factors not measured in this study or variable residency time of A. australis in contaminated areas. It is also possible that fish in the Moreton region are displaying enzymatic adaptation, which has been reported previously for fish subjected to chronic exposure to organic contaminants. These potential interferences complicate interpretation of EROD activity from feral biota. It is, therefore, suggested that future monitoring combine the two methods by applying passive sampler extracts to in vitro EROD assays. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We investigate here the diffusion of n-decane in nanoporous MCM-41 silicas with pore diameters between 3.0 and 4.3 nm, and at various temperatures and purge flow rates, by the Zero Length Column method. A complete-time-range analysis of desorption curves is used to derive the diffusion coefficient, and the effect of pore size, purge flow rate and temperature on the diffusion character is systematically studied. The results show that the calculated low-coverage diffusivity values are strongly dependent on temperature but only weakly dependent on pore size. The study reveals that transport is controlled by intracrystalline diffusion and dominated by sorbate-sorbent interaction, with the experimental isosteric heat matching the potential energy of flat-lying n-decane molecules on the surface, determined using a united atom model. The diffusion activation energy and adsorption isosteric heat at zero loading for the different pore size MCM-41 samples vary in a narrow range respectively, and their ratio is essentially constant over the pore size range studied. The study shows that the ZLC method is an effective tool to investigate the diffusion kinetics of hydrocarbons in mesoporous MCM-41 materials. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In vitro measurements of skin absorption are an increasingly important aspect of regulatory studies, product support claims, and formulation screening. However, such measurements are significantly affected by skin variability. The purpose of this study was to determine inter- and intralaboratory variation in diffusion cell measurements caused by factors other than skin. This was attained through the use of an artificial (silicone rubber) rate-limiting membrane and the provision of materials including a standard penetrant, methyl paraben (MP), and a minimally prescriptive protocol to each of the 18 participating laboratories. Standardized calculations of MP flux were determined from the data submitted by each laboratory by applying a predefined mathematical model. This was deemed necessary to eliminate any interlaboratory variation caused by different methods of flux calculations. Average fluxes of MP calculated and reported by each laboratory (60 +/- 27 mug cm(-2) h(-1), n = 25, range 27-101) were in agreement with the standardized calculations of MP flux (60 +/- 21 mug cm(-2) h(-1), range 19-120). The coefficient of variation between laboratories was approximately 35% and was manifest as a fourfold difference between the lowest and highest average flux values and a sixfold difference between the lowest and highest individual flux values. Intra-laboratory variation was lower, averaging 10% for five individuals using the same equipment within a single laboratory. Further studies should be performed to clarify the exact components responsible for nonskin-related variability in diffusion cell measurements. It is clear that further developments of in vitro methodologies for measuring skin absorption are required. (C) 2005 Wiley-Liss, Inc.
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.
Resumo:
In this work, a working model is proposed of molecular sieve silica (MSS) multistage membrane systems for CO cleanup at high temperatures (up to 500 degrees C) in a simulated fuel cell fuel processing system. Gases are described as having little interactions with each other relative to the pore walls due to low isosteric heat of adsorption on silica surfaces and high temperatures. The Arrhenius function for activated transport of pure gases was used to predict mixture concentration in the permeate and retentate streams. Simulation predicted CO could be reduced to levels below the required 50 ppmv for polymer electrolyte membrane fuel cell anodes at a stage H-2/CO selectivity of higher than 40 in 4 series membrane units. Experimental validation showed predicting mixture concentrations required only pure gas permeation data. This model has significant application for setting industrial stretch targets and as a robust basis for complex membrane model configurations. (c) 2006 American Institute of Chemical Engineers.
Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies
Resumo:
The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.