153 resultados para melt flow index

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University; on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and Larson (1998). We explore the predictive power of a differential multi-mode version of the pom-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (1999), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic theory based Navier-Stokes solver has been implemented on a parallel supercomputer (Intel iPSC Touchstone Delta) to study the leeward flowfield of a blunt nosed delta wing at 30-deg incidence at hypersonic speeds (similar to the proposed HERMES aerospace plane). Computational results are presented for a series of grids for both inviscid and laminar viscous flows at Reynolds numbers of 225,000 and 2.25 million. In addition, comparisons are made between the present and two independent calculations of the some flows (by L. LeToullec and P. Guillen, and S. Menne) which were presented at the Workshop on Hypersonic Flows for Re-entry Problems, Antibes, France, 1991.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial dysfunction is an early key event of atherogenesis. Both fitness level and exercise intervention have been shown to positively influence endothelial function. In a cross-sectional study of 47 children, the relationship between habitual physical activity and flow-mediated dilation (FMD) of the brachial artery was explored. Habitual physical activity levels (PALs) were assessed using a validated stable isotope technique, and FMD of the brachial artery was measured via high-resolution ultrasound. The results showed that habitual physical activity significantly correlated with FMD (r=0.39, P=0.007), and remained the most influential variable on dilation in multivariate analysis. Although both fitness level and exercise intervention have previously been shown to positively influence FMD, this is the first time that a relationship with normal PALs has been investigated, especially, at such a young age. These data support the concept that physical activity exerts its protective effect on cardiovascular health via the endothelium and add further emphasis to the importance of physical activity in childhood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Flow State Scale-2 (FSS-2) and Dispositional Flow Scale-2 (DFS-2) are presented as two self-report instruments designed to assess flow experiences in physical activity. Item modifications were made to the original versions of these scales in order to improve the measurement of some of the flow dimensions. Confirmatory factor analyses of an item identification and a cross-validation sample demonstrated a good fit of the new scales. There was support for both a 9-first-order factor model and a higher order model with a global flow factor. The item identification sample yielded mean item loadings on the first-order factor of .78 for the FSS-2 and .77 for the DFS-2. Reliability estimates ranged from .80 to .90 for the FSS-2, and .81 to .90 for the DFS-2. In the cross-validation sample, mean item loadings on the first-order factor were .80 for the FSS-2, and .73 for the DFS-2. Reliability estimates ranged between .80 to .92 for the FSS-2 and .78 to .86 for the DFS-2. The scales are presented as ways of assessing flow experienced within a particular event (FSS-2) or the frequency of flow experiences in chosen physical activity in general (DFS-2).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate tomographic imaging of the refractive index of turbid media using bifocal optical coherence refractometry (BOCR). The technique, which is a variant of optical coherence tomography, is based on the measurement of the optical pathlength difference between two foci simultaneously present in a medium of interest. We describe a new method to axially shift the bifocal optical pathlength that avoids the need to physically relocate the objective lens or the sample during an axial scan, and present an experimental realization based on an adaptive liquid-crystal lens. We present experimental results, including video clips, which demonstrate refractive index tomography of a range of turbid liquid phantoms, as well as of human skin in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.