74 resultados para medicinal plants toxicity
em University of Queensland eSpace - Australia
Resumo:
Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta -sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol, 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed, Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.
Resumo:
In recent years, an increasing percentage of people from industrialized countries have been using complementary and alternative medicines (CAM). This, combined with numerous warnings regarding the potential toxicity of these therapies, suggests the need for practitioners to keep abreast of the reported incidence of renal toxicity caused by the ingestion of medicinal herbs. The goal of the present two-part series, on the toxic or beneficial effects of medicinal herbs on renal health, is to provide practitioners with a summary of the most recent information as well as the means by which evidence for benefit or toxicity has been found. In this first article, we explore in vivo evidence of toxicity. Included are nephrotoxicity from aristolochic acid and other components within herbs, herb-drug interactions resulting in adverse renal effects, and renal toxicity from contaminants within the extracts. The review aims to provide a guide to encourage future toxicity studies and rigorous clinical trials.
Resumo:
In Australian freshwaters, Anabaena circinalis, Microcystis spp. and Cylindrospermopsis raciborskii are the dominant toxic cyanobacteria. Many of these Surface waters are used as drinking water resources. Therefore, the National Health and Medical Research Council of Australia set a guideline for MC-LR toxicity equivalents of 1.3 mug/l drinking, water. However, due to lack of adequate data, no guideline values for paralytic shellfish poisons (PSPs) (e.g. saxitoxins) or cylindrospermopsin (CYN) have been set. In this spot check. the concentration of microcystins (MCs), PSPs and CYN were determined by ADDA-ELISA, cPPA, HPLC-DAD and/or HPLC-MS/MS, respectively, in two water treatment plants in Queensland/Australia and compared to phytoplankton data collected by Queensland Health, Brisbane. Depending on the predominant cyanobacterial species in a bloom, concentrations of up to 8.0, 17.0 and 1.3 mug/l were found for MCs, PSPs and CYN, respectively. However, only traces (< 1.0 mug/l) of these toxins were detected in final water (final product of the drinking water treatment plant) and tap water (household sample). Despite the low concentrations of toxins detected in drinking water, a further reduction of cyanobacterial toxins is recommended to guarantee public safety. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana Knuth.), a pasture species used in mine-site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations, which were representative of the soil solution, and an ion exchange resin to maintain stable concentrations of Cu in solution. Copper toxicity was damaging to plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of < 1 mu M, with damage evident from an external concentration of 0.2 mu M. Critical to the success of this experiment, in quantitatively examining the relationship between external Cu concentration and plant response, was the use of ion exchange resin to buffer the concentration of Cu in solution. After some initial difficulty with pH control, stable concentrations of Cu in solution were maintained for the major period of plant growth. The development of this technique will facilitate future investigations of the effect of heavy metals on plants.
Resumo:
Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥ 1.7 µM (corresponding to 90 % maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.
Resumo:
Phytophthora root rot (Phytophthora medicaginis) and colletotrichum crown rot (Colletotrichum trifoli) are the 2 most serious pathogens of lucerne in eastern Australia. Work reported in this paper shows that in glasshouse tests of the 11 most commonly grown Australian lucerne cultivars, the proportion of individual plants with resistance to both pathogens ranges from 0 (Hunter River and Aurora) through to a maximum of 19.8% (Sequel HR). Within 9 of the cultivars, the proportion of individual plants resistant to the 2 pathogens was <7%. Since these 2 diseases are known to cause serious losses in eastern Australia, the results indicate further improvement in lucerne production can be obtained by increasing the proportion of individual plants in a cultivar resistant to both pathogens. This would be best achieved by identifying dominant sources of resistance and incorporating this into on-going lucerne breeding programs.