24 resultados para mature seed
em University of Queensland eSpace - Australia
Resumo:
A supersweet sweet corn hybrid, Pacific H5, was planted at weekly intervals (P-1 to P-5) in spring in South-Eastern Queensland. All plantings were harvested at the same time resulting in immature seed for the last planting (P-5). The seed was handled by three methods: manual harvest and processing (M-1), manual harvest and mechanical processing (M-2) and mechanical harvest and processing (M-3), and later graded into three sizes (small, medium and large). After eight months storage at 12-14degreesC, seed was maintained at 30degreesC with bimonthly monitoring of germination for fourteen months and seed damage at the end of this period. Seed quality was greatest for M-1 and was reduced by mechanical processing but not by mechanical harvesting. Large and medium seed had higher germination due to greater storage reserves but also more seed damage during mechanical processing. Immature seed from premature harvest (P-5) had poor quality especially when processed mechanically and reinforced the need for harvested seed to be physiologically mature.
Resumo:
Malva parviflora L. (Malvaceae) is rapidly becoming a serious weed of Australian farming systems. An understanding of the variability of its seed behaviour is required to enable the development of integrated weed management strategies. Mature M. parviflora seeds were collected from four diverse locations in the Mediterranean-type climatic agricultural region of Western Australia. All of the seeds exhibited physical dormancy at collection; manual scarification or a period of fluctuating summer temperatures (50/20 degrees C or natural) were required to release dormancy. When scarified and germinated soon (1 month) after collection, the majority of seeds were able to germinate over a wide range of temperatures (5-37 degrees C) and had no light requirement. Germination was slower for seeds stored for 2 months than seeds stored for 2 years, suggesting the presence of shallow physiological dormancy. Seed populations from regions with similar annual rainfall exhibited similar dormancy release patterns; seeds from areas of low rainfall (337-344mm) were more responsive to fluctuating temperatures, releasing physical dormancy earlier than those from areas of high rainfall (436-444mm). After 36 months, maximum seedling emergence from soil in the field was 60%, with buried seeds producing 13-34% greater emergence than seeds on the surface. Scanning electron microscopy of the seed coat revealed structural differences in the chalazal region of permeable and impermeable seeds, suggesting the importance of this region in physical dormancy breakdown of M. parviflora seeds. The influence of rainfall during plant growth in determining dormancy release, and hence, germination and emergence timing, must be considered when developing management strategies for M. parviflora.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
Dormancy release in seeds of Lolium rigidum Gaud. (annual ryegrass) was investigated in relation to temperature and seed water content. Freshly matured seeds were collected from cropping fields at Wongan Hills and Merredin, Western Australia. Seeds from Wongan Hills were equilibrated to water contents between 6 and 18% dry weight and after-ripened at constant temperatures between 9 and 50degreesC for up to 23 weeks. Wongan Hills and Merredin seeds at water contents between 7 and 17% were also after-ripened in full sun or shade conditions. Dormancy was tested at regular intervals during after-ripening by germinating seeds on agar at 12-h alternating 15degreesC (dark) and 25degreesC (light) periods. Rate of dormancy release for Wongan Hills seeds was a positive linear function of after-ripening temperature above a base temperature (T-b) of 5.4degreesC. A thermal after-ripening time model for dormancy loss accounting for seed moisture in the range 6-18% was developed using germination data for Wongan Hills seeds after-ripened at constant temperatures. The model accurately predicted dormancy release for Wongan Hills seeds after-ripened under naturally fluctuating temperatures. Seeds from Merredin responded similarly but had lower dormancy at collection and a faster rate of dormancy release in seeds below 9% water content.
Resumo:
The role of temperature and rainfall during seed development in modulating subsequent seed dormancy status was studied for Lolium rigidum Gaud. (annual ryegrass). Climatic parameters relating to geographic origin were compared with annual ryegrass seed dormancy characteristics for seeds collected from 12 sites across the southern Western Australian cropping region. Seed germination was tested soon after collection and periodically during subsequent after-ripening. Temperature in the year of seed development and long-term rainfall patterns showed correlations with aspects of seed dormancy, particularly the proportion of seeds remaining dormant following 5 months of after-ripening. Consequently, for one population the temperature (warm/cool) and water supply (adequate/reduced) during seed development were manipulated to investigate the role of maternal environment in the quantity and dormancy characteristics of seeds produced. Seeds from plants grown at warm temperatures were fewer in number, weighed less, and were less dormant than those from plants grown at cool temperature. Seeds that developed under both cool temperature and reduced moisture conditions lost dormancy faster than seeds from well-watered plants. Seed maturation environment, particularly temperature, can have a significant effect on annual ryegrass seed numbers and seed dormancy characteristics.
Resumo:
Fire ephemerals are short-lived plants with seeds that persist in the soil and germinate after a fire or physical soil disturbance. Ex situ germination of many Australian fire ephemerals has previously been difficult. Dormancy was present in most of the nine fire ephemerals examined. Alyogyne hakeifolia (Giord.) Alef. and Alyogyne huegelii (Endl.) Fryxell (Malvaceae) seeds had physical and possibly also physiological dormancy, Actinotus leucocephalus Benth. (Apiaceae) seeds had morphophysiological dormancy, Austrostipa compressa (R.Br.) S.W.L. Jacobs & J. Everett and Austrostipa macalpinei (Reader) S.W.L. Jacobs & J. Everett (Poaceae) seeds were either non-dormant or possessed physiological dormancy, and seeds of all remaining species possessed physiological dormancy. A proportion of the Alyogyne hakeifolia, Alyogyne huegelii, Austrostipa compressa and Austrostipa macalpinei seed populations were non-dormant because some seeds could germinate at the various incubation temperatures without further treatment. At 20 degrees C, artificial methods of inducing germination such as manual or acid scarification were among the optimal treatments for Austrostipa compressa, Austrostipa macalpinei, Alyogyne huegelii, Actinotus leucocephalus and Grevillea scapigera A.S. George (Proteaceae), and gibberellic acid induced maximum germination of Tersonia cyathiflora (Fenzl) J.W. Green (Gyrostemonaceae) seeds. Heat (70 degrees C for 1 h) and smoke water was one of the most effective treatments for germinating Actinotus leucocephalus and Codonocarpus cotinifolius (Desf.) F. Muell. (Gyrostemonaceae) seeds. Germination of Grevillea scapigera, Codonocarpus cotinifolius, Gyrostemon racemiger H. Walter (Gyrostemonaceae) and Tersonia cyathiflora did not exceed 40% and may require other treatments to overcome dormancy. Although the nine fire ephemerals examined require fire to germinate under natural conditions, a range of germination responses and dormancy types was observed.
Resumo:
Experiments were conducted to investigate the effect of Lolium rigidum (annual ryegrass) seed developmental stage and application rate of glyphosate and SpraySeed (paraquat 135 g/L+ diquat 115 g/L) on the number, germinability, and fitness of seeds produced. Glyphosate (450 g/L) was most effective when applied at a rate of 0.5-1 L/ha during heading and anthesis, reducing the number of filled seeds produced compared with unsprayed plants. Application post-anthesis, when seeds were at the milk to soft dough stage, was less effective. SpraySeed was most effective when applied post-anthesis, during the milk and early dough stages of seed development at a rate of 0.5-1L/ha, resulting in the production of few viable seeds. Although some filled seeds were produced, most of the seeds were dead. Application during anthesis or once the seeds reached soft dough stage was less effective. For both herbicides, those seeds that were capable of germinating were smaller and had slower radicle and coleoptile growth, resulting in slower early seedling growth and reduced biomass production within the first month of growth. Additionally, glyphosate application reduced the proportion of seeds exhibiting dormancy. The anticipated reduction in seed competitive ability and altered emergence timing resulting from late-season herbicide application, even when application timing is not optimal, could be exploited to reduce the likelihood of successful L. rigidum establishment in the following season.
Resumo:
The effect of sheep digestion and mastication on Malva parviflora L. seed transmission, viability and germination was investigated. Mature M. parviflora seeds were subjected to 2 seed treatments: 'scarified', where the hard seed coat was manually cut to allow inhibition, and 'unscarified', where the hard seed coat was not cut. Seeds were placed directly into the rumen of fistulated sheep and removed at 0, 12, 24, 36 and 48 h of rumen digestion. After 12 h of in sacco exposure to digestion in the rumen, the germination of seeds that were initially scarified dropped from 99.2 to 1.4% and longer exposure periods produced no germinable seeds. In contrast, seeds that were unscarified when placed in the rumen produced over 92% germination regardless of in sacco digestion time, although manual scarification after retrieval was essential to elicit germination. In a second experiment, unscarified seeds (29000) were fed in a single meal to fistulated sheep and feces were collected at regular intervals between 6 and 120 h after feeding. Fecal subsamples were taken to determine number of seeds excreted, seed germination on agar and seed germination from feces. Major seed excretion in the feces commenced after 12 h and continued until 144 h, with peaks between 36 and 72 h after consumption. Although mastication and gut passage killed the majority of unscarified seeds, about 20% were recovered intact and over 90% of these recovered seeds were viable and could, thus, potentially form an extensive seed bank. A few excreted seeds (1%) were able to germinate directly from feces, which increased to a maximum of 10% after subsequent dry summer storage (3 months). Through information gained in this study, there is a potential to utilise livestock in an integrated weed management program for the control of M. parviflora, provided additional measures of weed control are in place such as holding periods (> 7 days) for movement of livestock from weed infested areas.
Resumo:
Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.