26 resultados para manganese sulfate
em University of Queensland eSpace - Australia
Resumo:
The aim of this work is to develop 3-acyl prodrugs of the potent analgesic morphine-6-sulfate (M6S). These are expected to have higher potency and/or exhibit longer duration of analgesic action than the parent compound. M6S and the prodrugs were synthesized, then purified either by recrystallization or by semi-preparative HPLC and the structures confirmed by mass spectrometry, IR spectrophotometry and by detailed 1- and 2-D NMR studies. The lipophilicities of the compounds were assessed by a combination of shake-flask, group contribution and HPLC retention methods. The octanol-buffer partition coefficient could only be obtained directly for 3-heptanoylmorphine-6-sulfate, using the shake-flask method. The partition coefficients (P) for the remaining prodrugs were estimated from known methylene group contributions. A good linear relationship between log P and the HPLC log capacity factors was demonstrated. Hydrolysis of the 3-acetyl prodrug, as a representative of the group, was found to occur relatively slowly in buffers (pH range 6.15-8.01), with a small buffer catalysis contribution. The rates of enzymatic hydrolysis of the 3-acyl group in 10% rat blood and in 10% rat brain homogenate were investigated. The prodrugs followed apparent first order hydrolysis kinetics, with a significantly faster hydrolysis rate found in 10% rat brain homogenate than in 10% rat blood for all compounds. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
This investigation was designed to examine the antinociceptive activity in rats of 3-O-acyl prodrugs of M6S relative to the parent drug, after intravenous and intramuscular injection, using the tail flick latency test of antinociception. M6S, 3-acetylmorphine-6-sulfate (3AcM6S), 3-propionylmorphine-6-sulfate (3PrM6S), 3-butanoylmorphine-6-sulfate (3BuM6S) and 3-heptanoylmorphine-6-sulfate (3HpM6S) were administered by the IV route in a dose of 4.10 mu mol/kg. Relatively high levels of antinociception (>40% Maximum Possible Effect) were achieved following administration of M6S, 3AcM6S and 3PrM6S, whereas insignificant antinociception (<20%MPE) was achieved following administration of 3BuM6S or 3HpM6S. Although the mean duration of action for 3AcM6S (6 h) was longer than for M6S or 3PrM6S (4 h), the mean area (+/- S.E.M.) under the degree of antinociception versus time curve (AUG) for 3AcM6S (151.6 +/- 6.9%MPE h) was not significantly different (p <0.05) from that for M6S (120.8 +/- 32.7%MPE h) or for 3PrM6S (106.0 +/- 21.3%MPE h). The mean ED50 (range) doses for M6S, 3AcM6S and 3PrM6S were calculated to be 4.16 (3.61-4.48), 4.32 (3.55-5.09) and 4.54 (4.21-4.79) mu mol/kg, respectively. Preliminary studies were conducted on potential long-acting formulations containing 8 x ED50 doses of M6S and the 3-acetyl and 3-propionyl esters suspended in soybean oil. These showed that 3PrM6S gave a greater AUC (mean + S.E.M.) (1087.4 +/- 97.4%MPE h) and longer duration of action (20 h) than did M6S (613.1 +/- 155.9%MPE h; 10 h duration) or 3AcM6S (379.3 + 114.2%MPE h: 8 h duration). Further studies are needed to more fully investigate these findings. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P
Resumo:
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+-activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5 (+/- 0.1) Angstrom. In the X-ray absorption spectrum of Mn2+-activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k less than or equal to 12 Angstrom(-1) by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15 Angstrom, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5 Angstrom, is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+-activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.
Resumo:
Two sulfate-reducing bacteria, which also reduce arsenate, were isolated; both organisms oxidized lactate incompletely to acetate. When using lactate as the electron donor, one of these organisms, Desulfomicrobium strain Ben-RB, rapidly reduced (doubling time = 8 h) 5.1 mM arsenate at the same time it reduced sulfate (9.6 mM). Sulfate reduction was not inhibited by the presence of arsenate. Arsenate could act as the terminal electron acceptor in minimal medium (doubling time = 9 h) in the absence of sulfate. Arsenate was reduced by a membrane-bound enzyme that is either a c-type cytochrome or is associated with such a cytochrome; benzyl-viologen- dependent arsenate reductase activity was greater in cells grown with arsenate/sulfate than in cells grown with sulfate only. The second organism, Desulfovibrio strain Ben-RA, also grew (doubling time = 8 h) while reducing arsenate (3.1 mM) and sulfate (8.3 mM) concomitantly. No evidence was found, however, that this organism is able to grow using arsenate as the terminal electron acceptor. Instead, it appears that arsenate reduction by the Desulfovibrio strain Ben-RA is catalyzed by an arsenate reductase that is encoded by a chromosomally-borne gene shown to be homologous to the arsC gene of the Escherichia coli plasmid, R773 ars system.
Resumo:
BACKGROUND. Prostate secretory granules (PSG) represent the basic secretory unit of the prostate gland, containing many of its exocrine proteases. Recent analysis of intraluminal corpora amylacea, a proposed by-product of PSG secretion, detected sulfated glycosaminoglycans (GAG) possibly keratan sulfate (KS),indicating a secretory mechanism for GAG in the human prostate surface epithelial cell. METHODS. Immunostains using anti-KS and anti-prostate-specific antigen (PSA) were evaluated on 10 sequential radical prostatectomy specimens, three of which had received neoadjuvant antiandrogen therapy. Extracts of normal secretory tissue as well as a sample composed almost entirely of prostatic stroma were subjected to Western blot analysis, using the same antibody panel. RESULTS. Keratan sulfate secretion from the normal prostate epithelial cell has been confirmed and correlates, as does PSA, with the presence of cytoplasmic PSG. No such correlation exists in most adenocarcinomas or in benign epithelium after androgen ablation. Western blot analyses confirmed tissue immunostains and demonstrated a secretory proteoglycan of 70-95 kDa. CONCLUSIONS. Recognition of PSG heralds a novel secretory mechanism within the human prostate gland that is linked to the secretion of KS. The role of KS in normal prostate secretion remains unknown, although it appears downregulated in neoplastic and androgen-ablated cells. (C) 2000 Wiley-Liss, Inc.
Resumo:
Nuclear magnetic resonance spectroscopy was used to investigate the conformations of the platypus venom C-type natriuretic peptide A (OvCNPa) in aqueous solutions and in solutions containing sodium dodecyl sulfate (SDS) micelles. The chemically synthesized OvCNPa showed a substantial decrease in flexibility in aqueous solution at 10 degreesC, allowing the observation of medium- and long-range nuclear Overhauser enhancement (NOE) connectivities. Three-dimensional structures calculated using these data showed flexible and reasonably well-defined regions, the locations of which were similar in the two solvents. In aqueous solution, the linear part that spans residues 3-14 was basically an extended conformation while the cyclic portion, defined by residues 23-39, contained a series of beta-turns. The overall shape of the cyclic portion was similar to that observed for an atrial natriuretic peptide (ANP) variant in aqueous solution. OvCNPa adopted a different conformation in SDS micelles wherein the N-terminal region, defined by residues 2-10, was more compact, characterised by turns and a helix, while the cyclic region had turns and an overall shape that was fundamentally different from those structures observed in aqueous solution. The hydrophobic cluster, situated at the centre of the ring of the structure in aqueous solution, was absent in the structure in the presence of SDS micelles. Thus, OvCNPa interacts with SDS micelles and can possibly form ion-channels in cell membranes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries. PI-88 reduced heparan sulfate content in the injured artery wall and prevented change in smooth muscle phenotype. However, the mechanism of PI-88 inhibition was not merely confined to the antiheparanase activity of this compound. PI-88 blocked extracellular signal-regulated kinase-1/2 (ERK1/2) activity within minutes of smooth muscle cell injury. It facilitated FGF-2 release from uninjured smooth muscle cells in vitro, and super-released FGF-2 after injury while inhibiting ERK1/2 activation. PI-88 inhibited the decrease in levels of FGF-2 protein in the rat artery wall within 8 minutes of injury. PI-88 also blocked injury-inducible ERK phosphorylation, without altering the clotting time in these animals. Optical biosensor studies revealed that PI-88 potently inhibited (K-i 10.3 nmol/L) the interaction of FGF-2 with heparan sulfate. These findings show for the first time the capacity of this sulfated oligosaccharide to directly bind FGF-2, block cellular signaling and proliferation in vitro, and inhibit injury-induced smooth muscle cell hyperplasia in two animal models. As such, this study demonstrates a new role for PI-88 as an inhibitor of intimal thickening after balloon angioplasty. The full text of this article is available online at http://www.circresaha.org.
Resumo:
Little is known about the responses of Australian plants to excess metal, including Mn. It is important to remedy this lack of information so that knowledgeable decisions can be made about managing Mn contaminated sites where inhabited by Australian vegetation. Acacia holosericea, Melaleuca leucadendra, Eucalyptus crebra and Eucalyptus camaldulensis were grown in dilute solution culture for 10 weeks. The seedlings ( 42 days old) were exposed to six Mn treatments viz., 1, 8, 32, 128, 512 and 2048 muM. The order of tolerance to toxic concentrations of Mn was A. holosericea congruent to = E. crebra < M. leucadendra < E. camaldulensis, the critical external concentrations being approximately 5.1, 5.0, 21 and 330 muM, respectively. The critical tissue Mn concentrations for the youngest fully expanded leaf and total shoots were, respectively, 265 and 215 mug g(-1) DM for A. holosericea, 445 and 495 mug g(-1) DM for M. leucadendra, 495 and 710 mug g(-1) DM for E. crebra and 7230 and 6510 mug g(-1) DM for E. camaldulensis. The high tolerance of E. camaldulensis ( as opposed to the sensitivity of E. crebra) to excess Mn raises concern about fauna feeding on the plant and is consistent with hypotheses suggesting the Eucalyptus subgenus Symphomyrtus is particularly tolerant of stress, including excess Mn. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the management of Mn toxic sites.
Resumo:
BACKGROUND. Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS. Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS. The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65-95 kDa. The KS moiety was susceptible to digestion with keratanase 11 and peptide N-glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS. The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. (C) 2003 Wiley-Liss, Inc.
Resumo:
Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.