5 resultados para luteal phase
em University of Queensland eSpace - Australia
Resumo:
Aim. The aim of this study is to assess the role of progesterone in preterm birth prevention. Methods. A MEDLINE search (from 1966 to the present; date of last search January 2005) was performed - using the key words progesterone, pregnancy, preterm birth, preterm labor, and randomized, controlled trial - in order to identify randomized, controlled trials in which progesterone (either intramuscular or vaginal administration) was compared with placebo or no treatment. Data were extracted and a meta-analysis was performed. Results. Seven randomized, controlled trials were identified. Women who received progesterone were statistically significantly less likely to give birth before 37 weeks (seven studies, 1020 women, RR = 0.58, 95% CI = 0.48-0.70), to have an infant with birth weight of
Resumo:
Maternal recognition of pregnancy in marsupials occurs in more subtle ways than it does in eutherians. For instance, unlike in eutherians, the plasma progesterone profiles of pregnant and non-pregnant animals are similar during the luteal phase. It is typically during the brief luteal phase that both gestation and parturition occur in marsupials. Yet histological and physiological changes have been documented between gravid and non-gravid uteri in certain monovular marsupials and between pregnant and non-pregnant animals in polyovular marsupials. Early pregnancy factor (EPF), a 10.8-kDa serum protein known to be homologous to chaperonin 10, is associated with maternal immunosuppression, embryonic development and pregnancy in eutherian mammals. It has been reported in two Australian marsupials: the dasyurid Sminthopsis macroura and the phalangerid Trichosurus vulpecula. This paper documents its occurrence in the New World didelphid Monodelphis domestica. EPF is detectable by rosette inhibition assay in the peripheral circulation of pregnant but not of non-pregnant or pseudopregnant animals. Our work focuses on the embryo–maternal signalling role of EPF during pregnancy. Because progesterone-driven changes are similar in pregnant and non-pregnant marsupials, these animals are an excellent laboratory model in which to investigate the role of EPF in orchestrating the physiological changes necessary to sustain pregnancy.
Resumo:
Presently AI in the koala has been based on the insemination of fresh undiluted semen collected with an artificial vagina (1). While this approach has been extremely successful, further refinement and implementation of AI for use with cryopreserved semen will require protocols that incorporate diluted semen collected by EE. Recent studies have shown that koala semen is likely to have an "ovulation factor" such that over-dilution may result in ovulation failure (2). The current study determined whether AI of EEed neat and/or diluted semen was capable of inducing a luteal phase and/or resulted in the production of pouch young. All koalas were inseminated in the breeding season between day 2 and 5 of oestrus and subsequently monitored for evidence of parturition (day 35) and return of oestrus. Successful induction of a luteal phase was based on evidence of an elevated progesterone concentration 28 days after insemination (2). All semen samples were collected by EE and seminal characteristics recorded (3). The diluent used for semen extension was Tris-citrate glucose (TCG) which contained antibiotics but no egg yolk (4). AI was conducted on conscious koalas using a "Cook koala insemination catheter" and a glass rod used to mimic penile thrusting (1). Three insemination treatments were used; (A) 1mL of undiluted semen (n = 9); (B) 2mL of 1:1 diluted semen (n = 9); and (C) 1 mL of 1:1 diluted semen (n = 9). The results of the AI trial are shown in Table 1. This study has shown that it is possible to use both neat and diluted semen (1:1; 1 or 2 mL) to successfully produce koala offspring at conception rates similar to those achieved following natural mating. Interestingly, dilution of semen had no apparent detrimental effect on induction of a luteal phase following AI.