52 resultados para low-frequency fatigue
em University of Queensland eSpace - Australia
Resumo:
A protein-truncating variant of CHEK2, 1100delC, is associated with a moderate increase in breast cancer risk. We have determined the prevalence of this allele in index cases from 300 Australian multiple-case breast cancer families, 95% of which had been found to be negative for mutations in BRCA1 and BRCA2. Only two (0.6%) index cases heterozygous for the CHEK2 mutation were identified. All available relatives in these two families were genotyped, but there was no evidence of co-segregation between the CHEK2 variant and breast cancer. Lymphoblastoid cell lines established from a heterozygous carrier contained approximately 20% of the CHEK2 1100delC mRNA relative to wild-type CHEK2 transcript. However, no truncated CHK2 protein was detectable. Analyses of expression and phosphorylation of wild-type CHK2 suggest that the variant is likely to act by haploinsufficiency. Analysis of CDC25A degradation, a downstream target of CHK2, suggests that some compensation occurs to allow normal degradation of CDC25A. Such compensation of the 1100delC defect in CHEK2 might explain the rather low breast cancer risk associated with the CHEK2 variant, compared to that associated with truncating mutations in BRCA1 or BRCA2.
Resumo:
Patients with low back pain (LBP) often present with impaired proprioception of the lumbopelvic region. For this reason, proprioception training usually forms part of the rehabilitation protocols. New exercise equipment that produces whole body, low frequency vibration (WBV) has been developed to improve muscle function, and reportedly improves proprioception. The aim of this pilot study was to investigate whether weightbearing exercise given in conjunction with WBV would affect lumbosacral position sense in healthy individuals. For this purpose, twenty-five young individuals with no LBP were assigned randomly to an experimental or control group. The experimental group received WBV for five minutes while holding a static, semi-squat position. The control group adopted the same weightbearing position for equal time but received no vibration. A two-dimensional motion analysis system measured the repositioning accuracy of pelvic tilting in standing. The experimental (WBV) group demonstrated a significant improvement in repositioning accuracy over time (mean 0.78 degrees) representing 39% improvement. It was concluded that WBV may induce improvements in lumbosacral repositioning accuracy when combined with a weightbearing exercise. Future studies with WBV should focus on evaluating its effects with different types of exercise, the exercise time needed for optimal outcomes, and the effects on proprioception deficits in LBP patients.
Resumo:
A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 degrees C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.
Resumo:
The purpose of this study was to examine the effects of different methods of measuring training volume, controlled in different ways, on selected variables that reflect acute neuromuscular responses. Eighteen resistance-trained males performed three fatiguing protocols of dynamic constant external resistance exercise, involving elbow flexors, that manipulated either time-under-tension (TUT) or volume load (VL), defined as the product of training load and repetitions. Protocol A provided a standard for TUT and VL. Protocol B involved the same VL as Protocol A but only 40% concentric TUT; Protocol C was equated to Protocol A for TUT but only involved 50% VL. Fatigue was assessed by changes in maximum voluntary isometric contraction (MVIC), interpolated doublet (ID), muscle twitch characteristics (peak twitch, time to peak twitch, 0.5 relaxation time, and mean rates of force development and twitch relaxation). All protocols produced significant changes (P
Resumo:
The present study details new turbulence field measurements conducted continuously at high frequency for 50 hours in the upper zone of a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was used, and the signal was post-processed thoroughly. The suspended sediment concentration wad further deduced from the acoustic backscatter intensity. The field data set demonstrated some unique flow features of the upstream estuarine zone, including some low-frequency longitudinal oscillations induced by internal and external resonance. A striking feature of the data set is the large fluctuations in all turbulence properties and suspended sediment concentration during the tidal cycle. This feature has been rarely documented.
Resumo:
Frequency, recency, and type of prior exposure to very low-and high-frequency words were manipulated in a 3-phase (i.e., familiarization training, study, and test) design. Increasing the frequency with which a definition for a very low-frequency word was provided during familiarization facilitated the word's recognition in both yes-no (Experiment 1) and forced-choice paradigms (Experiment 2). Recognition of very low-frequency words not accompanied by a definition during familiarization first increased, then decreased as familiarization frequency increased (Experiment I). Reasons for these differences were investigated in Experiment 3 using judgments of recency and frequency. Results suggested that prior familiarization of a very low-frequency word with its definition may allow a more adequate episodic representation of the word to be formed during a subsequent study trial. Theoretical implications of these results for current models of memory are discussed.
Resumo:
In order to separate the effects of experience from other characteristics of word frequency (e.g., orthographic distinctiveness), computer science and psychology students rated their experience with computer science technical items and nontechnical items from a wide range of word frequencies prior to being tested for recognition memory of the rated items. For nontechnical items, there was a curvilinear relationship between recognition accuracy and word frequency for both groups of students. The usual superiority of low-frequency words was demonstrated and high-frequency words were recognized least well. For technical items, a similar curvilinear relationship was evident for the psychology students, but for the computer science students, recognition accuracy was inversely related to word frequency. The ratings data showed that subjective experience rather than background word frequency was the better predictor of recognition accuracy.
Resumo:
Choice of the operational frequency is one of the most responsible parts of any radar design process. Parameters of radars for buried object detection (BOD) are very sensitive to both carrier frequency and ranging signal bandwidth. Such radars have a specific propagation environment with a strong frequency-dependent attenuation and, as a result, short operational range. This fact dictates some features of the radar's parameters: wideband signal-to provide a high range resolution (fractions of a meter) and a low carrier frequency (tens or hundreds megahertz) for deeper penetration. The requirement to have a wideband ranging signal and low carrier frequency are partly in contradiction. As a result, low-frequency (LF) ultrawide-band (UWB) signals are used. The major goal of this paper is to examine the influence of the frequency band choice on the radar performance and develop relevant methodologies for BOD radar design and optimization. In this article, high-efficient continuous wave (CW) signals with most advanced stepped frequency (SF) modulation are considered; however, the main conclusions can be applied to any kind of ranging signals.
Resumo:
In this paper, a new method for characterizing the newborn heart rate variability (HRV) is proposed. The central of the method is the newly proposed technique for instantaneous frequency (IF) estimation specifically designed for nonstationary multicomponen signals such as HRV. The new method attempts to characterize the newborn HRV using features extracted from the time–frequency (TF) domain of the signal. These features comprise the IF, the instantaneous bandwidth (IB) and instantaneous energy (IE) of the different TF components of the HRV. Applied to the HRV of both normal and seizure suffering newborns, this method clearly reveals the locations of the spectral peaks and their time-varying nature. The total energy of HRV components, ET and ratio of energy concentrated in the low-frequency (LF) to that in high frequency (HF) components have been shown to be significant features in identifying the HRV of newborn with seizures.
Resumo:
In this paper, we propose features extracted from the heart rate variability (HRV) based on the first and second conditional moments of time-frequency distribution (TFD) as an additional guide for seizure detection in newborn. The features of HRV in the low frequency band (LF: 0-0.07 Hz), mid frequency band (MF: 0.07-0.15 Hz), and high frequency band (HF: 0.15-0.6 Hz) have been obtained by means of the time-frequency analysis using the modified-B distribution (MBD). Results of ongoing time-frequency research are presented. Based on our preliminary results, the first conditional moment of HRV which is also known as the mean/central frequency in the LF band and the second conditional moment of HRV which is also known as the variance/instantaneous bandwidth (IB) in the HF band can be used as a good feature to discriminate the newborn seizure from the non-seizure
Resumo:
This paper presents an analysis of dysfluencies in two oral tellings of a familiar children's story by a young boy with autism. Thurber & Tager-Flusberg (1993) postulate a lower degree of cognitive and communicative investment to explain a lower frequency of non-grammatical pauses observed in elicited narratives of children with autism in comparison to typically developing and intellectually disabled controls. we also found a very low frequency of non-grammatical pauses in our data, but indications of high engagement and cognitive and communicative investment. We point to a wider range of disfluencies as indicators of cognitive load, and show that the kind and location of dysfluencies produced may reveal which aspects of the narrative task are creating the greatest cognitive demand: here, mental state ascription, perspectivization, and adherence to story schema. This paper thus generates analytical options and hypotheses that can be explored further in a larger population of children with autism and typically developing controls.
Resumo:
The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.
Resumo:
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.