7 resultados para location-based media
em University of Queensland eSpace - Australia
Resumo:
Many queries sent to search engines refer to specific locations in the world. Location-based queries try to find local services and facilities around the user’s environment or in a particular area. This paper reviews the specifications of geospatial queries and discusses the similarities and differences between location-based queries and other queries. We introduce nine patterns for location-based queries containing either a service name alone or a service name accompanied by a location name. Our survey indicates that at least 22% of the Web queries have a geospatial dimension and most of these can be considered as location-based queries. We propose that location-based queries should be treated different from general queries to produce more relevant results.
Resumo:
The pedagogical exercise described here was used to investigate how spatial communication about the manipulation of objects in a virtual and physical space is communicated between remote partners. It continues work done by others. Where it differs from previous research in this area is in its use of a qualitative methodology to study how these types of interactions are structured, communicated and interpreted via text-based media. What emerged from the qualitative analysis are new insights over the previous quantitative investigations. This paper reports on completed research.
Resumo:
A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.
Resumo:
A location-based search engine must be able to find and assign proper locations to Web resources. Host, content and metadata location information are not sufficient to describe the location of resources as they are ambiguous or unavailable for many documents. We introduce target location as the location of users of Web resources. Target location is content-independent and can be applied to all types of Web resources. A novel method is introduced which uses log files and IN to track the visitors of websites. The experiments show that target location can be calculated for almost all documents on the Web at country level and to the majority of them in state and city levels. It can be assigned to Web resources as a new definition and dimension of location. It can be used separately or with other relevant locations to define the geography of Web resources. This compensates insufficient geographical information on Web resources and would facilitate the design and development of location-based search engines.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.