7 resultados para liquid films

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A scaling law is presented that provides a complete solution to the equations bounding the stability and rupture of thin films. The scaling law depends on the fundamental physicochemical properties of the film and interface to calculate bounds for the critical thickness and other key film thicknesses, the relevant waveforms associated with instability and rupture, and film lifetimes. Critical thicknesses calculated from the scaling law are shown to bound the values reported in the literature for numerous emulsion and foam films. The majority of critical thickness values are between 15 to 40% lower than the upper bound critical thickness provided by the scaling law.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite decades of experimental and theoretical investigation on thin films, considerable uncertainty exists in the prediction of their critical rupture thickness. According to the spontaneous rupture mechanism, common thin films become unstable when capillary waves. at the interfaces begin to grow. In a horizontal film with symmetry at the midplane. unstable waves from adjacent interfaces grow towards the center of the film. As the film drains and becomes thinner, unstable waves osculate and cause the film to rupture, Uncertainty sterns from a number of sources including the theories used to predict film drainage and corrugation growth dynamics. In the early studies, (lie linear stability of small amplitude waves was investigated in the Context of the quasi-static approximation in which the dynamics of wave growth and film thinning are separated. The zeroth order wave growth equation of Vrij predicts faster wave growth rates than the first order equation derived by Sharma and Ruckenstein. It has been demonstrated in an accompanying paper that film drainage rates and times measured by numerous investigations are bounded by the predictions of the Reynolds equation and the more recent theory of Manev, Tsekov, and Radoev. Solutions to combinations of these equations yield simple scaling laws which should bound the critical rupture thickness of foam and emulsion films, In this paper, critical thickness measurements reported in the literature are compared to predictions from the bounding scaling equations and it is shown that the retarded Hamaker constants derived from approximate Lifshitz theory underestimate the critical thickness of foam and emulsion films, The non-retarded Hamaker constant more adequately bounds the critical thickness measurements over the entire range of film radii reported in the literature. This result reinforces observations made by other independent researchers that interfacial interactions in flexible liquid films are not adequately represented by the retarded Hamaker constant obtained from Lifshitz theory and that the interactions become significant at much greater separations than previously thought. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A review of thin film drainage models is presented in which the predictions of thinning velocities and drainage times are compared to reported values on foam and emulsion films found in the literature. Free standing films with tangentially immobile interfaces and suppressed electrostatic repulsion are considered, such as those studied in capillary cells. The experimental thinning velocities and drainage times of foams and emulsions are shown to be bounded by predictions from the Reynolds and the theoretical MTsR equations. The semi-empirical MTsR and the surface wave equations were the most consistently accurate with all of the films considered. These results are used in an accompanying paper to develop scaling laws that bound the critical film thickness of foam and emulsion films. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have designed an amphipathic peptide, AM1, that can self-assemble at the air-water interface to form an interfacial ensemble capable of switching between a mechanically strong cohesive film state and a mobile detergent state in response to changes in the solution conditions. The mechanical properties of the AM1 ensemble in the cohesive film state are qualitatively equivalent to the protein beta-LG, while in the mobile detergent state they are equivalent to the low molecular weight surfactant, SDS. In this work the foaming properties of AM1 are compared to those of beta-LG and SDS at the same weight concentration and it is found that AM1 adsorbs rapidly to the interface, initially forming a dense foam like that formed by SDS and superior to beta-LG. In addition, under solution conditions where interfacially adsorbed AM1 forms a cohesive film state the foam stability is high, comparable to beta-LG. However when the interfacially adsorbed AM1 forms a foam under detergent-state conditions, the foam stability is poor. We have achieved control of foam stability through the design of a peptide that exhibits stimuli-responsive changes in the extent of intermolecular interactions between peptide molecules adsorbed at the air water interface. These results illustrate the exciting potential of peptide surfactants to form a new class of stimuli-responsive foaming agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical transmission electron microscopy indicates that liquid film migration occurs during sintering of an Al-Cu-Mg alloy, that intragranular liquid pools develop from migrating films and that iron segregates to these pools. It is suggested that a high localised iron concentration retards the liquid film migration rate by reducing the coherency strain in the retreating grain, causing a region of the film to detach from the boundary, thus forming an intragranular pool in the advancing grain. Alloys with low iron levels develop few intragranular pools and have high sintered densities. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the phase relations in the Bi-2212 and Yb2O3 system, Bi2Sr2Ca1-xYbxCu2Oy thick films are prepared by partial melt processing via an intermediate reaction between Bi-2212 and Yb2O3. When Bi-2212 and Yb2O3 are partially melted and then slowly cooled, solid solutions of Bi2Sr2Ca1-xYbxCu2Oy form by reactions between liquid and solid phases which contain Yb. Following these reactions, Ca is partially replaced in Bi-2212 matrix and participates in the formation of secondary phases, such as Bi-free, (Ca, Sr)O-x and CaO. Variation of the Bi-2212-Yb2O3 ratios and processing parameters changes the balance between the phases and leads to different Yb:Ca ratios in the Bi-2212 matrix of processed thick films. When the partial melting process is optimized for each sample to minimize the growth of secondary phases, x = 0.42-0.46 for the samples prepared at pO(2) = 0.01 atm, x = 0.24-0.29 for the samples prepared at pO(2) = 0.21 atm, x = 0.18-0.23 for the samples prepared at pO(2) = 0.99 atm are obtained regardless to the starting compositions. It is found that superconducting properties of Bi2Sr2Ca1-xYbxCu2Oy thick films strongly depend on the processing conditions, because the conditions result in different Yb content in the Bi-2212 matrix and the volume fraction of the secondary phases. The highest T-c(0) of 77, 90 and 91 K were obtained for the samples processed at 0.01, 0.21 and 0.99 atm of O-2, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first characterization of the mechanical properties of lysozyme films formed by self-assembly at the air-water interface using the Cambridge interfacial tensiometer (CIT), an apparatus capable of subjecting protein films to a much higher level of extensional strain than traditional dilatational techniques. CIT analysis, which is insensitive to surface pressure, provides a direct measure of the extensional stress-strain behavior of an interfacial film without the need to assume a mechanical model (e.g., viscoelastic), and without requiring difficult-to-test assumptions regarding low-strain material linearity. This testing method has revealed that the bulk solution pH from which assembly of an interfacial lysozyme film occurs influences the mechanical properties of the film more significantly than is suggested by the observed differences in elastic moduli or surface pressure. We have also identified a previously undescribed pH dependency in the effect of solution ionic strength on the mechanical strength of the lysozyme films formed at the air-water interface. Increasing solution ionic strength was found to increase lysozyme film strength when assembly occurred at pH 7, but it caused a decrease in film strength at pH 11, close to the pI of lysozyme. This result is discussed in terms of the significant contribution made to protein film strength by both electrostatic interactions and the hydrophobic effect. Washout experiments to remove protein from the bulk phase have shown that a small percentage of the interfacially adsorbed lysozyme molecules are reversibly adsorbed. Finally, the washout tests have probed the role played by additional adsorption to the fresh interface formed by the application of a large strain to the lysozyme film and have suggested the movement of reversibly bound lysozyme molecules from a subinterfacial layer to the interface.