10 resultados para linear feedback control
em University of Queensland eSpace - Australia
Resumo:
For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case: Given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state- based) control problems ( the stationary linear-quadratic-Gaussian class), this question is a semidefinite program. Moreover, the answer also applies to Markovian (current-based) feedback.
Resumo:
Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control-especially quantum feedback control-experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.
Resumo:
An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state a alpha/0 > + beta/1 > can be prepared deterministically.
Resumo:
The GuRm is a 1.2m tall, 23 degree of freedom humanoid consuucted at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRw projcct is the development of appropriate learning strategies for control and coodinadon of the robot’s many joints. The development of learning strategies is Seen as a way to sidestep the inherent intricacy of modeling a multi-DOP biped robot. This paper outlines the approach taken to generate an appmpria*e control scheme for the joinis of the GuRoo. The paper demonsrrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-fonward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on thc CMAC architecture. Results from tats on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.
Resumo:
We compare three proposals for nondeterministic control-sign gates implemented using linear optics and conditional measurements with nonideal ancilla mode production and detection. The simplified Knill-Laflamme-Milburn gate [Ralph , Phys. Rev. A 65, 012314 (2001)] appears to be the most resilient under these conditions. We also find that the operation of this gate can be improved by adjusting the beam splitter ratios to compensate to some extent for the effects of the imperfect ancilla.
Resumo:
We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.