13 resultados para ligands
em University of Queensland eSpace - Australia
Resumo:
The syntheses of the hexadentate ligands 2,2,10,10-tetra(methyleneamine)-4,8-dithiaundecane (PrN(4)S(2)amp), 2,2,11,11-tetra(methyleneamine)-4,9-dithiadodecane (BuN(4)S(2)amp), and 1,2-bis(4,4-methyleneamine)-2-thiapentyl)benzene (XyN(4)S(2)amp) are reported and the complexes [Co(RN(4)S(2)amp)](3+) (R = Pr, Bu, Xy) characterised by single crystal X-ray study. The low-temperature (11 K) absorption spectra have been measured in Nafion films. From the observed positions of both spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands, octahedral ligand-field parameters (10D(q), B and C) have been determined. DFT calculations suggest that significant interaction between the d-d and CT excitations occurs for the complexes. The calculations offer an explanation for the observed deviations from linearity of the relationship between Co-59 magnetogyric ratio and beta(DeltaE)(-1) (beta = the nephelauxetic ratio; DeltaE the energy of the (1)A(1g) --> T-1(1g) transition) for a series of amine and mixed amine/thioether donor complexes.
Resumo:
The synthesis of the hexadentate ligand 5,6-dimethyl-2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (1,2-Me(2)EtN(4)S(2)amp) is reported. The diastereiosomers were separated as cobalt(III) complexes using cation exchange chromatography. The rac and mesa isomers were characterized by NMR (C-13, H-1, Co-59), ESI-MS, UV-Vis spectroscopy and cyclic voltammetry. Single crystals of [Co(rac-1,2-Me(2)EtN(4)S(2)amp)] Cl-2(ClO4) (.) 2H(2)O were characterized by X-ray diffraction. The low-temperature (11 K) absorption spectra of the complexes have been measured in Nafion films and from the observed positions of both spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(2g) bands, octahedral ligand-field parameters (10Dq, B and C) were determined. These results, in conjunction with the Co-59 NMR data, are used to further explore the relationship between the Co-59 magnetogyric ratio (gamma(Co)) and the product of the nephelauxetic ratio and the wavelength of the (1)A(1g) --> T-1(1g) transition (beta(DeltaE)(-1)) for complexes of mixed donor nitrogen-thioether ligands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as beta-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N'-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 Fe-III:L complexes were isolated and the crystal structures of Fe(HPPH)Cl-2, Fe(4BBPH)Cl-2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N'-bis-picolinoyl hydrazine; H(2)APH=N-4-aminobenzoyl-N'-picolinoyl hydrazine, H(2)3BBPH=N-3-bromobenzoyl-N'-picolinoylhydrazine and H(2)4BBPH=N-(4-bromobenzoyl)-N'-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The Fe-III complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N'-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N'-(picolinoyl)-hydrazine), H2PPH, H(2)3BBPH and H(2)4BBPH, showed high efficacy at mobilizing Fe-59 from cells and inhibiting Fe-59 uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit Fe-59 uptake could not be accounted for by direct chelation of Fe-59-Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.
Resumo:
The multiheme SoxAX proteins are notable for their unusual heme ligation (His/Cys-persulfide in the SoxA subunit) and the complexity of their EPR spectra. The diheme SoxAX protein from Starkeya novella has been expressed using Rhodobacter capsulatus as a host expression system. rSoxAX was correctly formed in the periplasm of the host and contained heme c in similar amounts as the native SoxAX. ESI-MS showed that the full length rSoxA, in spite of never having undergone catalytic turnover, existed in several forms, with the two major forms having masses of 28 687 +/- 4 and 28 718 +/- 4 Da. The latter form exceeds the expected mass of rSoxA by 31 4 Da, a mass close to that of a sulfur atom and indicating that a fraction of the recombinant protein contains a cysteine persulfide modification. EPR spectra of rSoxAX contained all four heme-dependent EPR signals (LS1a, LS1b, LS2, LS3) found in the native SoxAX proteins isolated from bacteria grown under sulfur chemolithotrophic conditions. Exposure of the recombinant SoxAX to different sulfur compounds lead to changes in the SoxA mass profile as determined by ESI while maintaining a fully oxidized SoxAX visible spectrum. Thiosulfate, the proposed SoxAX substrate, did not cause any mass changes while after exposure to dimethylsulfoxide a + 112 +/- 4 Da form of SoxA became dominant in the mass spectrum. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure
Resumo:
Interaction of Eph receptor tyrosine kinases with their membrane bound ephrin ligands initiates bidirectional signaling events that regulate cell migratory and adhesive behavior. Whole-mount in situ hybridization revealed overlapping expression of the Epha1 receptor and its high-affinity ligands ephrin A1 (Efna1) and ephrin A3 (Efna3) in the primitive streak and the posterior paraxial mesoderm during early mouse development. These results show complex and dynamic expression for all three genes with expression domains that are successively complementary, overlapping, and divergent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The mechanisms responsible for the immunosuppression associated with sepsis or some chronic blood infections remain poorly understood. Here we show that infection with a malaria parasite (Plasmodium berghei) or simple systemic exposure to bacterial or viral Toll-like receptor ligands inhibited cross-priming. Reduced cross-priming was a consequence of downregulation of cross-presentation by activated dendritic cells due to systemic activation that did not otherwise globally inhibit T cell proliferation. Although activated dendritic cells retained their capacity to present viral antigens via the endogenous major histocompatibility complex class I processing pathway, antiviral responses were greatly impaired in mice exposed to Toll-like receptor ligands. This is consistent with a key function for cross-presentation in antiviral immunity and helps explain the immunosuppressive effects of systemic infection. Moreover, inhibition of cross-presentation was overcome by injection of dendritic cells bearing antigen, which provides a new strategy for generating immunity during immunosuppressive blood infections.
Resumo:
We have investigated the isomeric distribution and rearrangement of complexes of the type [CoXLn](2+,3+) (where X = Cl-, OH-, H2O, and L-n represents a pentadentate 13-, 14-, and 15-membered tetraaza or diaza-dithia (N-4 or N2S2) macrocycle bearing a pendant primary amine). The preparative procedures for chloro complexes produced almost exclusively kinetically preferred cis isomers (where the pendant primary amine is cis to the chloro ligand) that can be separated by careful cation-exchange chromatography. For L-13 and L-14 the so-called cis-V isomer is isolated as the kinetic product, and for L-15 the cis-VI form (an N-based diastereomer) is the preferred, while for the L-14(S) complex both cis-V and trans-I forms are obtained. All these complexes rearrange to form stable trans isomers in which the pendent primary amine is trans to the monodentate aqua or hydroxo ligand, depending on pH and the workup procedure. In total 11 different complexes have been studied. From these, two different trans isomers of [CoCIL14S](2+) have been characterized crystallographically for the first time in addition to a new structure of cis-V-[CoCIL14S](2+); all were isolated as their chloride perchlorate salts. Two additional isomers have been identified and characterized by NMR as reaction intermediates. The remaining seven forms correspond to the complexes already known, produced in preparative procedures. The kinetic, thermal, and baric activation parameters for all the isomerization reactions have been determined and involve large activation enthalpies and positive volumes of activation. Activation entropies indicate a very important degree of hydrogen bonding in the reactivity of the complexes, confirmed by density functional theory studies on the stability of the different isomeric forms. The isomerization processes are not simple and even some unstable intermediates have been detected and characterized as part of the above-mentioned 11 forms of the complexes. A common reaction mechanism for the isomerization reactions has been proposed for all the complexes derived from the observed kinetic and solution behavior.
Resumo:
Motivation: While processing of MHC class II antigens for presentation to helper T-cells is essential for normal immune response, it is also implicated in the pathogenesis of autoimmune disorders and hypersensitivity reactions. Sequence-based computational techniques for predicting HLA-DQ binding peptides have encountered limited success, with few prediction techniques developed using three-dimensional models. Methods: We describe a structure-based prediction model for modeling peptide-DQ3.2 beta complexes. We have developed a rapid and accurate protocol for docking candidate peptides into the DQ3.2 beta receptor and a scoring function to discriminate binders from the background. The scoring function was rigorously trained, tested and validated using experimentally verified DQ3.2 beta binding and non-binding peptides obtained from biochemical and functional studies. Results: Our model predicts DQ3.2 beta binding peptides with high accuracy [area under the receiver operating characteristic (ROC) curve A(ROC) > 0.90], compared with experimental data. We investigated the binding patterns of DQ3.2 beta peptides and illustrate that several registers exist within a candidate binding peptide. Further analysis reveals that peptides with multiple registers occur predominantly for high-affinity binders.
Resumo:
The Co-III complexes of the hexadentate tripodal ligands HOsen (3-(2'-aminoethylamino)-2,2-bis((2 ''-aminoethylamino) methyl) propan-1-ol) and HOten (3-(2'-aminoethylthia)-2,2-bis((2 ''-aminoethylthia) methyl) propan-1-ol) have been synthesized and fully characterized. The crystal structures of [Co(HOsen)]Cl-3 center dot H2O and [Co(HOten)](ClO4)Cl-2 are reported and in both cases the ligands coordinate as tripodal hexadentate N-6 and N3S3 donors, respectively. Cyclic voltammetry of the N3S3 coordinated complex [Co(HOten)](3+) is complicated and electrode dependent. On a Pt working electrode an irreversible Co-III/II couple ( formal potential - 157 mV versus Ag-AgCl) is seen, which is indicative of dissociation of the divalent complex formed at the electrode. The free HOten released by the dissociation of [Co(HOten)](2+) can be recaptured by Hg as shown by cyclic voltammetry experiments on a static Hg drop electrode ( or in the presence of Hg2+ ions), which leads to the formation of an electroactive Hg-II complex of the N3S3 ligand (formal potential + 60 mV versus Ag-AgCl). This behaviour is in contrast to the facile and totally reversible voltammetry of the hexaamine complex [Co(HOsen)](3+) ( formal potential (Co-III/II) - 519 mV versus Ag-AgCl), which is uncomplicated by any coupled chemical reactions. Akinetic and thermodynamic analysis of the [Co(HOten)](2+)/[Hg(HOten)](2+) system is presented on the basis of digital simulation of the experimental voltammetric data.