4 resultados para leaf tissue

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The number of studies of tropical tree species that use molecular tools is increasing, most of which collect leaf tissue for genomic DNA extraction. In tropical trees the canopy is not only frequently inaccessible, but also, once reached, the leaf tissue is often heavily defended against herbivory by high concentrations of anti-predation compounds, which may inhibit downstream applications, particularly PCR. Cambium tissue, accessed directly from the tree trunk at ground level, offers a readily accessible resource that is less hampered by the presence of defensive chemicals than leaf tissue. Here we describe a simple method for obtaining tissue from the cambial zone for DNA extraction and test the applicability of the method in a range of tropical tree species. The method was used successfully to extract DNA from 11 species in nine families. A subset of the DNA extracts was tested in more detail and proved to be highly suitable for AFLP analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural flower induction is a major pineapple industry problem. It usually occurs when shortening days and low temperatures give raise to increased ethylene production in the leaf tissue and plant stem apex which in turn stimulates flowering. Natural flowering fruit matures 4 to 6 weeks ahead of the normal summer harvest resulting in the need for extra harvest passes and considerable yield losses. Ethylene is produced through the sequential action of ACC synthase and ACC oxidase. Our team has cloned an ACC synthase gene from pineapple (ACACS2), which is expressed in meristems and activated under the environmental conditions that induce flowering in nature. Genetic constructs have been produced containing ACACS2 in sense orienta¬tion to induce silencing of the host gene in the plant by co-suppression mechanisms. Two independent lines of transgenic plants have been produced and field trials have been conducted in Queensland for four years in order to study the characteristics of the transgenic lines. We have identified a group of transgenic plants demonstrating inherited flowering delay and confirmed co-suppression of the ACACS2 gene due to methylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the first systematic study of nutritional deficiencies of greater yam (Dioscorea alata). Yam plants (cv. 'Mahoa'a') were propagated from tuber discs and grown in nutrient solution, with nutrients supplied following a modified programmed nutrient-addition method. After an establishment period of four weeks, deficiencies of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), and molybdenum (Mo) were induced by omitting the relevant nutrient from the solution. Foliar symptoms were recorded photographically. Notably, deficiencies of the mobile macronutrients failed to induce senescence of oldest leaves, while vine growth and younger leaves were affected. Leaf blades of the main stem were sampled in sequence and analyzed chemically, providing the distribution of each nutrient from youngest to oldest leaves in both adequately supplied and deficient plants. The nutrient-concentration profiles, together with the visible symptoms, indicated that little remobilization of mobile macronutrients had occurred. For both macro- and micronutrients, young leaves gave the best separation of nutrient concentrations between well-nourished and deficient plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acclimatization and ex vitro establishment of tissue cultured coconut plantlets regenerated either from zygotic or somatic embryos could result to serious losses. Although high germination rates can be achieved in vitro, the survival of zygotic embryo derived plantlets in soil is very low (0-30%). Hence, treatments that could promote development of good quality seedlings having well-developed shoot and root is needed to increase seedling survival ex vitro. The effect of physical, chemical and light quality treatments on germination and growth of coconut embryos and tissue-cultured seedlings respectively, was investigated. The germination of coconut embryos was promoted when placed in a liquid Euwens (Y3) medium and incubated using a roller drum. Gibberellic acid (GA3) significantly affected growth of seedlings as it promoted shoot elongation, shoot and root expansion, and fresh and dry weight increase. However, GA3 did not significantly affect germination. In addition, the blue, red and yellow light significantly affected growth of seedlings as it promoted leaf and shoot elongation, fresh and dry weight increase, and root and leaf production. These conditions could be used to improve the growth and survival ex vitro of tissue cultured coconuts.