40 resultados para leaf epidermal
em University of Queensland eSpace - Australia
Resumo:
The ability to predict leaf area and leaf area index is crucial in crop simulation models that predict crop growth and yield. Previous studies have shown existing methods of predicting leaf area to be inadequate when applied to a broad range of cultivars with different numbers of leaves. The objectives of the study were to (i) develop generalised methods of modelling individual and total plant leaf area, and leaf senescence, that do not require constants that are specific to environments and/or genotypes, (ii) re-examine the base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence, and (iii) assess the method of calculation of individual leaf area from leaf length and leaf width in experimental work. Five cultivars of maize differing widely in maturity and adaptation were planted in October 1994 in south-eastern Queensland, and grown under non-limiting conditions of water and plant nutrient supplies. Additional data for maize plants with low total leaf number (12-17) grown at Katumani Research Centre, Kenya, were included to extend the range in the total leaf number per plant. The equation for the modified (slightly skewed) bell curve could be generalised for modelling individual leaf area, as all coefficients in it were related to total leaf number. Use of coefficients for individual genotypes can be avoided, and individual and total plant leaf area can be calculated from total leaf number. A single, logistic equation, relying on maximum plant leaf area and thermal time from emergence, was developed to predict leaf senescence. The base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence were 8, 34, and 40 degrees C, and apply for the whole crop-cycle when used in modelling of leaf senescence. Thus, the modelling of leaf production and senescence is simplified, improved, and generalised. Consequently, the modelling of leaf area index (LAI) and variables that rely on LAI will be improved. For experimental purposes, we found that the calculation of leaf area from leaf length and leaf width remains appropriate, though the relationship differed slightly from previously published equations.
Resumo:
Purpose, An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (r(j)) approaching the pore radii (r(p)) as well as approximation of the pore restriction form for r(j)/r(p) < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis. Methods, The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux. Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes. Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.
Resumo:
Purpose, An in vitro study was carried out to determine the iontophoretic permeability of local anesthetics through human epidermis. The relationship between physicochemical structure and the permeability of these solutes was then examined using an ionic mobility-pore model developed to define quantitative relationships. Methods. The iontophoretic permeability of both ester-type anesthetics (procaine, butacaine, tetracaine) and amide-type anesthetics (prilocaine, mepivacaine, lidocaine, bupivacaine, etidocaine, cinchocaine) were determined through excised human epidermis over 2 hrs using a constant d.c. current and Ag/AgCl electrodes. Individual ion mobilities were determined from conductivity measurements in aqueous solutions. Multiple stepwise regression was applied to interrelate the iontophoretic permeability of the solutes with their physical properties to examine the appropriateness of the ionic mobility-pore model and to determine the best predictor of iontophoretic permeability of the local anesthetics. Results. The logarithm of the iontophoretic permeability coefficient (log PCj,iont) for local anesthetics was directly related to the log ionic mobility and MW for the free volume form of the model when other conditions are held constant. Multiple linear regressions confirmed that log PCj,iont was best defined by ionic mobility (and its determinants: conductivity, pK(a) and MW) and MW. Conclusions. Our results suggest that of the properties studied, the best predictors of iontophoretic transport of local anesthetics are ionic mobility (or pK(a)) and molecular size. These predictions are consistent with the ionic mobility pore model determined by the mobility of ions in the aqueous solution, the total current, epidermal permselectivity and other factors as defined by the model.
Resumo:
In situ gelatin zymography is a technique, which utilises a gelatin-based emulsion overlay to detect and, more importantly, localise the gelatinase activity in underlying tissue. Gelatinase A [matrix metalloproteinase-2 (MMP-2)] and gelatinase B [matrix metalloproteinase-9 (MMP-9)] are present in equine hoof homogenates and supernatants from cultured hoof explants by SDS-PAGE gelatin zymography, and it has been assumed that the enzymes are derived solely from matrix and epithelia and not from other sources such as leucocytes. Using in situ zymography, gelatinases are shown to be localised within the equine epidermal hoof lamellae and, more specifically, are apparently produced by epidermal basal and/or parabasal cells. The pattern of expression correlates with that expected based on the progression of pathological changes observed during the onset of laminitis, thus providing further evidence that laminitis pathology probably arises as a result of inadequate local MMP regulation.
Resumo:
Purpose. To study epidermal and polyethylene membrane penetration and retention of the sunscreen benzophenone-3 (BP) from a range of single solvent vehicles and evaluate solvent effects on permeability parameters. Methods. The solubility of BP was measured in a number of solvents. Penetration of BP across human epidermis and high density polyethylene (HDPE) membranes was studied from 50% saturated solutions in each solvent. Results. Maximal BP fluxes from the solvents across the two membranes varied widely. Highest fluxes were observed from 90% ethanol (EtOH) for epidermis and from isopropyl myristate (IPM) and C12-15 benzoate alcohols (C12-15 BA) for HDPE membrane. Both the flux and estimated permeability coefficient and skin-vehicle partitioning of BP appeared to be related to the vehicle solubility parameter (delta(v)). The major effects of solvents on BP flux appear to be via changes in BP diffusivity through the membranes. Conclusions. Minimal penetration of sunscreens such as BP is best achieved by choosing vehicles with a delta(v) substantially different to the solubility parameter of the membrane.
Resumo:
Two synthetic analogues of murine epidermal. growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its H-1 chemical shifts suggested that its structure was also very similar to native.
Resumo:
A new species of the genus Gluconacetobacter, for which the name Gluconacetobacter sacchari sp. nov. is proposed, was isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug, Saccharicoccus sacchari, found on sugar cane growing in Queensland and northern New South Wales, Australia, The nearest phylogenetic relatives in the alpha-subclass of the Proteobacteria are Gluconacetobacter liquefaciens and Gluconacetobacter diazotrophicus, which have 98.8-99.3% and 97.9-98.5% 16S rDNA sequence similarity, respectively, to members of Gluconacetobacter sacchari. On the basis of the phylogenetic positioning of the strains, DNA reassociation studies, phenotypic tests and the presence of the Q10 ubiquinone, this new species was assigned to the genus Gluconacetobacter. No single phenotypic characteristic is unique to the species, but the species can be differentiated phenotypically from closely related members of the acetic acid bacteria by growth in the presence of 0.01% malachite green, growth on 30% glucose, an inability to fix nitrogen and an inability to grow with the L-amino acids asparagine, glycine, glutamine, threonine and tryptophan when D-mannitol was supplied as the sole carbon and energy source. The type strain of this species is strain SRI 1794(T) (= DSM 12717(T)).
Resumo:
Squamous differentiation of keratinocytes is associated with decreases in E2F-1 mRNA expression and E2F activity, and these processes are disrupted in squamous cell carcinoma cell lines. We now show that E2F-1 mRNA expression is increased in primary squamous cell carcinomas of the skin relative to normal epidermis, To explore the relationship between E2F-1 and squamous differentiation further, we examined the effect of altering E2F activity in primary human keratinocytes induced to differentiate. Promoter activity for the proliferation-associated genes, cdc2 and keratin 14, are inhibited during squamous differentiation. This inhibition can be inhibited by overexpression of E2F-1 in keratinocytes, Overexpression of E2F-1 also suppressed the expression of differentiation markers (transglutaminase type 1 and keratin 10) in differentiated keratinocytes, Blocking E2F activity by transfecting proliferating keratinocytes with dominant negative E2F-1 constructs inhibited the expression of cdc2 and E2F-1, but did not induce differentiation. Furthermore, expression of the dominant negative construct in epithelial carcinoma cell lines and normal keratinocytes decreased expression from the cdc2 promoter. These data indicate that E2F-1 promotes keratinocyte proliferation-specific marker genes and suppresses squamous differentiation-specific marker genes. Moreover, these data indicate that targeted disruption of E2F-1 activity may have therapeutic potential for the treatment of squamous carcinomas.
Resumo:
Production of sorghum [Sorghum bicolor (L.) Moench], an important cereal crop in semiarid regions of the world, is often limited by drought. When water is limiting during the grain-filling period, hybrids possessing the stay-green trait maintain more photosynthetically active leaves than hybrids not possessing this trait. To improve yield under drought, knowledge of the extent of genetic variation in green leaf area retention is required. Field studies were undertaken in north-eastern Australia on a cracking and self-mulching gray clay to determine the effects of water regime and hybrid on the components of green leaf area at maturity (GLAM). Nine hybrids varying in stay-green were grown under a fully irrigated control, postflowering water deficit, and terminal (pre- and postflowering) water deficit. Water deficit reduced GLAM by 67% in the terminal drought treatment compared with the fully irrigated control. Under terminal water deficit, hybrids possessing the B35 and KS19 sources of stay-green retained more GLAM (1260 cm(2) plant(-1)) compared with intermediate (780 cm(2) plant(-1)) and senescent (670 cm(2) plant(-1)) hybrids. RQL12 hybrids (KS19 source of stay-green) displayed delayed onset and reduced rate of senescence; A35 hybrids displayed only delayed onset. Visual rating of green leaf retention was highly correlated with measured GLAM, although this procedure is constrained by an inability to distinguish among the functional mechanisms determining the phenotype. Linking functional rather than phenotypic differences to molecular markers may improve the efficiency of selecting for traits such as stay-green.
Resumo:
Retention of green leaf area at maturity (GLAM), known as stay-green, is used as an indicator of postanthesis drought resistance in sorghum [Sorghum bicolor (L.) Moench] breeding programs in the USA and Australia. The critical issue is whether maintaining green leaves under postanthesis drought increases grain yield in stay-green compared with senescent hybrids. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gay clay. Nine closely related hybrids varying in rate of leaf senescence were grown under two water-limiting regimes, post-flowering water deficit and terminal (pre- and postflowering) water deficit, and a fully irrigated control. Under terminal water deficit, grain yield tvas correlated positively with GLAM (r = 0.75**) and negatively with rate of leaf senescence (r = -0.74**). Grain yield also increased by approximate to 0.35 Mg ha(-1) for every day that onset of leaf senescence was delayed beyond 76 DAE in the water-limited treatments. Stay-green hybrids produced 47% more postanthesis biomass than their senescent counterparts (920 vs. 624 g m(-2)) under the terminal water deficit regime. No differences in grain yield were found among eight of the nine hybrids under fully irrigated conditions, suggesting that the stay-green trait did not constrain yield in the well-watered control. The results indicate that sorghum hybrids possessing the stay-green trait have a significant yield advantage under postanthesis drought compared with hybrids not possessing this trait.
Resumo:
Reasons for performing study: Light microscopical studies show that the key lesion of laminitis is separation at the hoof lamellar dermal-epidermal interface. More precise knowledge of the damage occurring in the lamellar basement membrane zone may result if laminitis affected tissue is examined with the transmission electron microscope. This could lead to better understanding of the pathogenesis of lesions and the means of treatment or prevention. Objectives: To investigate the ultrastructure of acute laminitis as disease of greater severity is induced by increasing oligofructose (OF) dosage. Methods: Three pairs of normal horses, dosed with OF at 7.5, 10 and 12.5 g/kg bwt via nasogastric intubation, developed laminitis 48 h later. Following euthanasia, their forefeet were processed for transmission electron microscopy. Lamellar basal cell hemidesmosome (HD) numbers and the distance between the basal cell plasmalemma and the lamina densa of the basement membrane were estimated and compared to control tissue. Results: Increasing OF dosage caused greater HD loss and more severe laminitis. The characteristic separation of the basement membrane, cytoskeleton failure and rounded basal cell nuclei results from combined HD dysassembly and anchoring filament failure. Conclusions: Without properly assembled HDs, dysadhesion between the lamina densa of the basement membrane (BM) and epidermal basal cells occurs, emphasising the fundamental importance of HDs in maintaining attachment at the lamellar interface. Medical conditions that trigger lamellar matrix metalloproteinase (MMP) activation and/or compromise entry of glucose into lamellar basal cells appear to promote loss and failure of HDs and, therefore, laminitis development. Potential relevance: A correlation between lameness severity and escalating loss of lamellar HDs now exists. Therapy aimed at protecting the lamellar environment from haematogenous delivery of MMP activators or from glucose deprivation may control laminitis development.
Resumo:
Macrophomina phaseolina, causing leaf spot of mungbean is reported in Australia. Koch's postulates were fulfilled. The inoculum source was considered to be microsclerotia of the fungus in soil splashed onto the leaves. The disease is not expected to be a problem in Australia in most years.
Resumo:
Albicidins, a family of phytotoxins and antibiotics produced by Xanthomonas albilineans, are important in sugar cane leaf scald disease development. The albicidin detoxifying bacterium Pantoea dispersa (syn. Erwinia herbicola) SB1403 provides very effective biocontrol against leaf scald disease in highly susceptible sugar cane cultivars. The P. dispersa gene (albD) for enzymatic detoxification of albicidin has recently been cloned and sequenced. To test the role of albicidin detoxification in biocontrol of leaf scald disease, albD was inactivated in P. dispersa by site-directed mutagenesis. The mutants, which were unable to detoxify albicidin, were less resistant to the toxin and less effective in biocontrol of leaf scald disease than their parent strain. This indicates that albicidin detoxification contributes to the biocontrol capacity of P. dispersa against X. albilineans. Rapid growth and ability to acidify media are other characteristics likely to contribute to the competitiveness of P. dispersa against X. albilineans at wound sites used to invade sugar cane.
Resumo:
1. Chrysophtharta bimaculata is a native chrysomelid species that can cause chronic defoliation of plantation and regrowth Eucalyptus forests in Tasmania, Australia. Knowledge of the dispersion pattern of C. bimaculata was needed in order to assess the efficiency of an integrated pest management (IPM) programme currently used for its control. 2. Using data from yellow flight traps, local populations of C. bimaculata adults were monitored over a season at spatial scales relevant to commercial forestry: within a 50-ha operational management unit (a forestry 'coupe') and between coupes. In addition, oviposition was monitored over a season at a subset of the between-coupe sites. 3. Dispersion indices (Taylor's Power Law and Iwao's Mean Crowding regression method) demonstrated that C. bimaculata adults were spatially aggregated within and between coupes, although the number of egg-batches laid at the between-coupe scale was uniform. Spatial autocorrelation analysis showed that trap-catches at the within-coupe level were similar (positively autocorrelated) to a radius distance of approximately 110 m, and then dissimilar (negatively autocorrelated) at approximately 250 m. At the between-coupe scale, no repeatable spatial autocorrelation patterns were observed. 4. For any individual site, rapid changes in beetle density were observed to be associated with loosely aggregated flights of beetles into and out of that site. Peak adult catches (> the weekly mean plus standard deviation trap-catch) for a site occurred for a period of 2.0 +/- 0.22 weeks at a time (n = 37), with normally only one or two peaks per site per season. Peak oviposition events for a site occurred on average 1.4 +/- 0.11 times per season and lasted 1.5 +/- 0.12 weeks. 5. Analysis of an extensive data set (n = 417) demonstrated that adult abundance at a site was positively correlated with egg density, but negatively correlated with tree damage (caused by conspecifics) and the presence of conspecific larvae. There was no relationship between adult abundance and a visual estimate of the amount of young foliage on trees. 6. Adults of C. bimaculata are show n to occur in relatively small, mobile aggregations. This means that pest surveys must be both regular (less than 2 weeks apart) and intensive (with sampling points no more than 150 m apart) if beetle populations are to be monitored with confidence. Further refinement of the current IPM strategy must recognize the problems posed by this temporal and spatial patchiness, particularly with regard to the use of biological insecticides, such as Bacillus thuringiensis, for which only a very short operational window exists.