16 resultados para larva

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a search for potential biocontrol agents for Acacia melanoxylon R. Br. (Mimosaceae), larvae of the beetle Diplocoelus dilataticollis Lea (Coleoptera; Biphyllidae) were found within damaged seeds of A. melanoxylon. The gut contents of larvae and adults were examined to determine whether their diet included seeds, in apparent contradiction to the known mycophagous diet of members of this family of beetles. Calcofluor M2R White, a plant cell-wall staining optical brightener was used to differentiate between plant cell fragments and fungal tissue in the gut content smears. Gut contents of adults of a known seed predator of A. melanoxylon, a weevil of the genus Melanterius, were examined in the same way to provide a benchmark. The gut contents of D. dilataticollis differed from those of Melanterius sp. Fungal structures and microbes were found in the gut of D. dilataticollis, in contrast to plant cell fragments found in the gut of the weevil and from scrapes made directly from seeds. We conclude that larvae of D. dilataticollis feed primarily on fungi associated with damaged seed and therefore may not be the proximate cause of seed damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chalcid, Oomyzus sokolowskii Kurdjumov has been recorded in many parts of the world as a major larval-pupal, gregarious endoparasitoid of the diamondback moth, Plutella xylostella (Linnaeus), a serious pest of brassica vegetable crops worldwide. This study investigated intraspecific variation between two populations of O. sokiolowskii, one from Cape Verde Islands, West Africa and the other from Hangzhou, China. In all crosses and backcrosses between the two geographical populations, the numbers of progeny and sex ratio of progeny were similar to those obtained within each of the populations, demonstrating complete reproductive compatibility between the two populations. The two populations showed similar responses to temperature with respect to development time and survival of immature stages. Observations on the interactions between the two O. sokolowskii populations and Cotesia plutellae (Kurdjumov), another major parasitoid of P. xylostella, showed that neither population could achieve successful parasitism of P. xylostella larvae already parasitized by C. plutellac. However, both O. sokolowskii populations could achieve hyperparasitism by ovipositing into a mid-late stage larva of C. plutellae developing inside the primary host. Contrary to earlier reports, no evidence of intraspecific variations in ability to hyperparasitize between these two populations of O. sokolowskii was found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histological investigations of the pathology of Helicoverpa armigera (Hiibner) eggs after attack by the egg parasitoid, Trichogramma australicum (Girault), indicate that the developing embryo is immediately killed by envenomation. Soon afterward the histological staining characteristics of parasitized host embryos change and the embryonic germ band dissociates into a mass of individual rounded cells. Hosts attacked by females sterilized by gamma-irradiation showed the same pathological effects as normally parasitized hosts, indicating that host degeneration is due to female venom rather than factors derived from the parasitoid embryo or larva. Cell death also occurred in older host embryos although tissue breakdown was delayed. These findings have allowed us to determine not just that the host dies but what happens to the cells and tissues, i.e., their physical appearance, the time course of their degeneration, and that the process is retarded in older hosts. These processes can possibly be emulated in artificial diets. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasitoid wasps use a variety of mechanisms to alter their host's physiology to the benefit of the developing endoparasite inside the host larva. Association of certain wasps with viruses and virus-like particles (VLPs) that contribute to their success in parasitism is one of the fascinating evolutionary adaptations conferring active or passive protection for the endoparasite from the host immune system. Venturia canescens has been shown to produce VLPs that provide protection for the developing parasitoid egg inside the host, Ephestia kuehniella. Here, we report on the presence of a novel small RNA-containing virus from V. canescens, designated as VcSRV, occurring in the ovaries of the wasp. The virus particles are found together with VcVLPs in the lumen of the calyx region of the ovaries and are injected together with the egg and VcVLPs into E kuehniella larvae where they enter hemocytes. Alignment of the RNA-dependent RNA polymerase gene of VcSRV indicates that the virus most likely belongs to the recently described genus Iflavirus. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution and organisation of the mineral, amorphous calcium phosphate (ACP), has been investigated in the exoskeleton of the xylophagid fly larva Exeretonevra angustifrons Hardy. While head capsule and anal plate are smooth with a thin epicuticle, the epicuticle of the body is thicker and shows unusual micro-architecture comprised of minute hemispherical (dome-shaped) protrusions. Electron microprobe analysis and energy dispersive spectroscopy revealed heterogeneity of mineral elements across body cuticle and a concentration of ACP in the epicuticle, especially associated with the hemispherical structures. Further imaging and analysis showed the bulk of the ACP to be present in nano-sized granules. It is hypothesised that the specific distribution of ACP may enhance cuticular hardness or durability without reducing flexibility. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An artificial diet incorporating insect cells originally developed for Trichogramma australicum Girault (Hymenoptera: Tricho-grammatidae) was successfully used to rear Trichogramm pretiosum Riley (Hymenoptera: Trichogrammatidae). To refine the diet, individual components were removed. Chicken egg yolk and the insect cells were identified as the most important components for T. pretiosum development. Their removal resulted in few pupae and no adults. Removal of Grace's insect medium, a common component of artificial diets, was found to markedly improve the development of T pretiosum, producing 60% larva to pupa transition and 19% pupa to adult transition. There was no significant difference in T pretiosum development on diets in which milk powder, malt powder or infant formula were interchanged, despite differences in nutrient composition. The use of yeast extract resulted in significantly higher survival to the adult stage when compared with yeast hydrolysate enzymatic and a combination of yeast extract and yeast hydrolysate enzymatic. Comparison of four antimicrobial agents showed the antibacterial agent Gentamycin and the antifungal agent Nystatin had the least detrimental effect on T pretiosum development. The use of insect cell line diets has the potential to simplify artificial diet production and significantly reduce T pretiosum production costs in Australia compared to diets using insect hemolymph or the use of natural or factitious hosts. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wasps of the genus Trichogramma parasitise the eggs of Lepidoptera. They may deposit one or many eggs in each host. Survival is high at low density but reaches a plateau as density increases. To reveal the mechanism by which excess larvae die we chose a lepidopteran host that has flattened, transparent eggs and used video microscopy to record novel feeding behaviours and interactions of larval Trichogramma carverae (Oatman and Pinto) at different densities. Single larvae show a rapid food ingestion phase, followed by a period of extensive saliva release. Ultimately the host egg is completely consumed. The larva then extracts excess moisture from the egg, providing a dry environment for pupation. When multiple larvae are present, the initial scramble for food results in the larvae consuming all of the egg contents early in development. All larvae survive if there is sufficient food for all to reach a threshold developmental stage. If not, physical proximity results in attack and consumption of others, continuing until the surviving larvae reach the threshold stage beyond which attacks seem to be no longer effective. The number of larvae remaining at the end of rapid ingestion dictates how many will survive to emerge as adults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we present the first immunocytochemical data on the ontogeny of the nervous system and the musculature in the sipunculan Phascolion strombus. Myogenesis of the first anlagen of the body wall ring muscles occurs synchronously and not subsequently from anterior to posterior as in segmented spiralian taxa (i.e. annelids). The number of ring muscles remains constant during the initial stages of body axis elongation. In the anterior-posteriorly elongated larva, newly formed ring muscles originate along the entire body axis between existing myocytes, indicating that repeated muscle bands do not form from a posterior growth zone. During neurogenesis, the Phascolion larva expresses a non-metameric, paired, ventral nerve cord that fuses in the mid-body region in the late-stage elongated larva. Contrary to other trochozoans, Phascolion lacks any larval serotonergic structures. However, two to three FMRFamide-positive cells are found in the apical organ. In addition, late larvae show commissure-like neurones interconnecting the two ventral nerve cords, while early juveniles exhibit a third, medially placed FMRFamidergic ventral nerve. Although we did not find any indications for cryptic segmentation, certain neuro-developmental traits in Phascolion resemble the conditions found in polychaetes (including echiurans) and myzostomids and support a close relationship of Sipuncula and Annelida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of gymnolaemate Ectoprocta includes a larval stage of either the coronate or the cyphonautes type. Herein, we provide the first description of the larval neural anatomy of a coronate larva using immunocytochemical methods. We used antibodies against the neurotransmitters serotonin and FMRFamide and followed the fate of immunoreactive cells through metamorphosis. The larval serotonergic nervous system of Triphyllozoon mucronatum consists of an apical commissure, one pair of lateral axons, a coronate nerve net, an internal nerve mesh, and one pair of axons innervating the frontal organ. FMRFamide is only found in the larval commissure and in the lateral axons. The entire serotonergic and FMRFamidergic nervous system is lost during metamorphosis and the adult neural structures form independent of the larval ones. In the postlarval zooid, both neurotransmitters are detected in the cerebral commissure, in cell bodies located at the base of the lophophore, and in neurites connecting these somata to the cerebral commissure. These findings differ significantly from that observed in other lophotrochozoans, where certain larval neural features are either incorporated in the adult nervous system and/or have inductive functions during its ontogeny. The occurrence of a larval commissure and the lack of a serotonergic or FMRFamidergic apical organ in T. mucronatum are unique among lophotrochozoan larvae, which usually have a distinct apical organ containing serotonergic cells. Our data show that the larval neuroanatomy and the processes that underlie the reorganization of larval organ systems during metamorphosis may vary much more among lophotrochozoan taxa than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect host-parasitoid interactions provide fascinating examples of evolutionary adaptations in which the parasitoid employs a variety of measures and countermeasures to overcome the immune responses of its host. Maternal factors introduced by the female wasps during egg deposition play an important role in interfering with cellular and humoral components of the host's immune defence. Some of these components actively suppress host immune components and some are believed to confer protection for the developing endoparasitoid by rather passive means. The Venturio conescens/Ephestia kuehniella parrositoid-host system is unique among other systems in that the cellular defence capacity of the host remains virtually intact after parasitization. This system raises some important questions that are discussed in this mini-review: If immune protection of the egg and the emerging larva is achieved by surface properties comprising glycoproteins and virus-like particles (VLPs) produced by the female wasp, why is the prophenoloxidose activating cascade blocked in parasitized caterpillars? Another question is the evolutionary origin of these particles, given that the functional role and structural features of V. canescens VLP proteins are more related to cellular proteins than to viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As exemplified by aborted calcified liver lesions commonly found in patients from endemic areas, Echinococcus multilocularis metacestodes develop only in a minority of individuals exposed to infection with the papasite. Clinical research has disclosed some aspects of the survival strategy of E. multilocularis in human hosts. Clinical observations in liver transplantation and AIDS suggest that suppression of cellular/Th1related immunity increases disease severity. Most of the studies have stressed a role for CD8+ T cells and for Interleukin-10 in the development of tolerance. A spontaneous secretion of IL-10 by the PBMC seems to be the immunological hallmark of patients with progressive forms of alveolar echinococcosis (AE). IL-10-induced inhibition of effector macrophages, but also of antigen-presenting dendritic cells, may be operating and allowing parasite growth and survival. The genetic correlates of susceptibility to infection with E. multilocularis are clearer in humans than in the mouse model. A significant link between MHC polymorphism and clinical presentation of AE has been shown, and the spontaneous secretion of IL-10 in patients with a progressive AE is higher in patients with the HLA DR3+, DQ2+ haplotype. Clustering of cases in certain families, in communities otherwise exposed to similar risk factors, also points to immuno-genetic predisposition factors that may allow the larva to escape host immunity more easily. The first stage of larval development may be crucial in producing danger signals stimulating the initial production of cytokines. Therapeutic use of Interferon alpha is an attempt to foil the survival strategy of E. multilocularis. (C) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metamorphosis is both an ecological and a developmental genetic transition that an organism undergoes as a normal part of ontogeny. Many organisms have the ability to delay metamorphosis when conditions are unsuitable. This strategy carries obvious benefits, but may also result in severe consequences for older larvae that run low on energy. In the marine environment, some lecithotrophic larvae that have prolonged periods in the plankton may begin forming postlarval and juvenile structures that normally do not appear until after settlement and the initiation of metamorphosis. This precocious activation of the postlarval developmental program may reflect an adaptation to increase the survival of older, energy-depleted larvae by allowing them to metamorphose more quickly. In the present study, we investigate morphological and genetic consequences of delay of metamorphosis in larvae of Herdmania momus (a solitary stolidobranch ascidian). We observe significant morphological and genetic changes during prolonged larval life, with older larvae displaying significant changes in RNA levels, precocious migration of mesenchyme cells, and changes in larval shape including shortening of the tail. While these observations suggest that the older H. momus larvae are functionally different from younger larvae and possibly becoming more predisposed to undergo metamorphosis, we did not find any significant differences in gene expression levels between postlarvae arising from larvae that metamorphosed as soon as they were competent and postlarvae developing from larvae that postponed metamorphosis. This recalibration, or convergence, of transcript levels in the early postlarva suggests that changes that occur during prolonged larval life of H. momus are not necessarily associated with early activation of adult organ differentiation. Instead, it suggests that an autonomous developmental program is activated in H. momus upon the induction of metamorphosis regardless of the history of the larva.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastracan ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.