105 resultados para large modulation
em University of Queensland eSpace - Australia
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Experimental suppression of chaos has been achieved in an optically pumped far-infrared (NH3)-N-15 laser which displays Lorenz-like chaos. The method of control involves the application of a large amplitude slow (i.e., nonresonant) modulation of the pump power. This may be related to a delayed bifurcation to chaos observed when the pump power is ramped at a constant late.
Resumo:
The relationships between reproductive condition, level of reproductive investment and adrenocortical modulation to capture stress in marine turtles form the basis of this study. When subjected to either capture or ecological stressors, nesting marine turtles have demonstrated adrenocortical responses that are both small in magnitude, and slow in responsiveness. These observations were further investigated to determine whether this minimal stress response was a physiological strategy to maximize reproductive investment in adult green Chelonia mydas and hawksbill Eretmochelys imbricata turtles. Female green and hawksbill turtles exhibited a decrease in adrenocortical responsiveness with progressive reproductive condition. Breeding turtles exhibited most suppression of their adrenocortical response to capture compared to both non-breeding and pre-breeding female counterparts. Nesting green turtles maintained a suppressed adrenocortical response to capture throughout the nesting season despite decreased reproductive investment. In contrast, male green and hawksbill turtles were less able to modulate their corticosterone (B) response to acute capture stress. During breeding, male turtles possessed significantly greater adrenocortical responses to capture than females. These results could indicate that the large reproductive investment necessary for female marine turtle reproduction might underlie the marked decrease in adrenocortical responsiveness. This hormonal mechanism could function as one strategy by which female marine turtles maximize their current reproductive event, even though under certain situations this mechanism could entail costs to female survival.
Resumo:
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K+ (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1 + GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca2+-activated large conductance K+ channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1 + GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K+ channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K+ channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1 + GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca2+, Mg2+, Zn2+, and Ba2+) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K+ currents, but Cs+-blocked hyperpolarization-activated inward currents including I-H were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca2+-activated K+ channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Resumo:
Tight junctions are directly involved in regulating the passage of ions and macromolecules (gate functions) in epithelial and endothelial cells. The modulation of these gate functions to transiently regulate the paracellular permeability of large solutes and ions could increase the delivery of pharmacological agents or gene transfer vectors. To reduce the inflammatory responses caused by tight junction-regulating agents, alternative strategies directly targeting specific tight junction proteins could prove to be less toxic to airway epithelia. The apical delivery of peptides corresponding to the first extracellular loop of occludin to transiently modulate apical paracellular flux has been demonstrated in intestinal epithelia. We hypothesized that apical application of these occludin peptides could similarly modulate tight junction permeability in airway epithelia. Thus, we investigated the effects of apically applied occludin peptide on the paracellular permeability of molecular tracers and viral vectors in well differentiated human airway epithelial cells. The effects of occludin peptide on cellular toxicity, tight junction protein expression and localization, and membrane integrity were also assessed. Our data showed that apically applied occludin peptide significantly reduced transepithelial resistance in airway epithelia and altered tight junction permeability in a concentration-dependent manner. These alterations enhanced the paracellular flux of dextrans as well as gene transfer vectors. The occludin peptide redistributed occludin but did not alter the expression or distribution of ZO-1, claudin-1, or claudin-4. These data suggest that specific targeting of occludin could be a better-suited alternative strategy for tight junction modulation in airway epithelial cells compared with current agents that modulate tight junctions.
Resumo:
The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd3+ stop ions from the membrane bilayer and thus remove the MscL channel block.
Resumo:
The effects of substance P (SP) on nicotinic acetylcholine (ACh)-evoked currents were investigated in parasympathetic neurons dissociated from neonatal rat intracardiac ganglia using standard whole cell, perforated patch, and outside-out recording configurations of the patch-clamp technique. Focal application of SP onto the soma reversibly decreased the peak amplitude of the ACh-evoked current with half-maximal inhibition occurring at 45 mu M and complete block at 300 mu M SP. Whole cell current-voltage (I-V) relationships obtained in the absence and presence of SP indicate that the block of ACh-evoked currents by SP is voltage independent. The rate of decay of ACh-evoked currents was increased sixfold in the presence of SP (100 mu M), suggesting that SP may increase the rate of receptor desensitization. SP-induced inhibition of ACh-evoked currents was observed following cell dialysis and in the presence of either 1 mM 8-Br-cAMP, a membrane-permeant cAMP analogue, 5 mu M H-7, a protein kinase C inhibitor, or 2 mM intracellular AMP-PNP, a nonhydrolyzable ATP analogue. These data suggest that a diffusible cytosolic second messenger is unlikely to mediate SP inhibition of neuronal nicotinic ACh receptor (nAChR) channels. Activation of nAChR channels in outside-out membrane patches by either ACh (3 mu M) or cytisine (3 mu M) indicates the presence of at least three distinct conductances (20, 35, and 47 pS) in rat intracardiac neurons. In the presence of 3 mu M SP, the large conductance nAChR channels are preferentially inhibited. The open probabilities of the large conductance classes activated by either ACh or cytisine were reversibly decreased by 10- to 30-fold in the presence of SP. The single-channel conductances were unchanged, and mean apparent channel open times for the large conductance nAChR channels only were slightly decreased by SP. Given that individual parasympathetic neurons of rat intracardiac ganglia express a heterogeneous population of nAChR subunits represented by the different conductance levels, SP appears to preferentially inhibit those combinations of nAChR subunits that form the large conductance nAChR channels. Since ACh is the principal neurotransmitter of extrinsic (vagal) innervation of the mammalian heart, SP may play an important role in modulating autonomic control of the heart.
Resumo:
Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.
Resumo:
Recent efforts in the characterization of air-water flows properties have included some clustering process analysis. A cluster of bubbles is defined as a group of two or more bubbles, with a distinct separation from other bubbles before and after the cluster. The present paper compares the results of clustering processes two hydraulic structures. That is, a large-size dropshaft and a hydraulic jump in a rectangular horizontal channel. The comparison highlighted some significant differences in clustering production and structures. Both dropshaft and hydraulic jump flows are complex turbulent shear flows, and some clustering index may provide some measure of the bubble-turbulence interactions and associated energy dissipation.
Resumo:
The present study was designed to test the utility of a stress-coping model of employee adjustment to organisational change. Specifically, it was proposed that employee adjustment to this type of work stress would be influenced by the characteristics of the change situation, employees' appraisals of the situation, their coping strategies, and the extent of their personal resources. Data were collected from 140 middle managers and supervisors involved in a large-scale public sector integration. The results of the research provided some support for the proposed model: high levels of psychological distress were related to a reliance on informal sources of information, high appraised stress, low appraised certainty, and the use of avoidant rather than problem-focused strategies, whereas poor social functioning was associated with low self-esteem, high levels or disruption across the period of change, a reliance on informal sources of information, and the use of avoidant coping strategies. There was no evidence that coping strategies mediated the effects of the event characteristics, situational appraisals, and personal resources on adjustment; however, there was some evidence linking these variables to coping strategies, in particular, problem-focused coping. There was also some evidence to indicate that the experience of organisational change was different for managers and supervisors: levels of threat were higher for the managers than the supervisors, but there was no difference between the groups of employees in terms of adjustment.
Resumo:
The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.
Resumo:
The large fat globules that can be present in UHT milk due to inadequate homogenisation cause a cream layer to form that limits the shelf life of UHT milk. Four different particle size measurement techniques were used to measure the size of fat globules in poorly homogenised UHT milk processed in a UHT pilot plant. The thickness of the cream layer that formed during storage was negatively correlated with homogenisation pressure. It was positively correlated with the mass mean diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by laser light scattering using the Malvern Mastersizer. Also, the thickness of the cream layer was positively correlated with the volume mode diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by electrical impedance using the Coulter Counter. The cream layer thickness did not correlate significantly with the Coulter Counter measurements of volume mean diameter, or volume percentages of particles between 2 and 5 mu m or 5 and 10 mu m diameter. Spectroturbidimetry (Emulsion Quality Analyser) and light microscopy analyses were found to be unsuitable for assessing the size of the fat particles. This study suggests that the fat globule size distribution as determined by the electrical impedance method (Coulter Counter) is the most useful for determining the efficiency of homogenisation and therefore for predicting the stability of the fat emulsion in UHT milk during storage.
Resumo:
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Resumo:
Familial hyperaldosteronism type II (FH-II) is characterized by autosomal dominant inheritance and hypersecretion of aldosterone due to adrenocortical hyperplasia or an aldosterone-producing adenoma; unlike FH type I (FH-I), hyperaldosteronism in FH-II is not suppressible by dexamethasone. Of a total of 17 FH-II families with 44 affected members, we studied a large kindred with 7 affected members that was informative for linkage analysis. Family members were screened with the aldosterone/PRA ratio test; patients with aldosterone/PRA ratio greater than 25 underwent fludrocortisone/salt suppression testing for confirmation of autonomous aldosterone secretion. Postural testing, adrenal gland imaging, and adrenal venous sampling were also performed. Individuals affected by FH-II demonstrated lack of suppression of plasma A levels after 4 days of dexamethasone treatment (0.5 mg every 6 h). All patients had neg ative genetic testing for the defect associated with FH-I, the CYP11B1/CYP11B2 hybrid gene. Genetic linkage was then examined between FH-II and aldosterone synthase (the CYP11B2 gene) on chromosome 8q. A polyadenylase repeat within the 5'-region of the CYP11B2 gene and 9 other markers covering an approximately 80-centimorgan area on chromosome 8q21-8qtel were genotyped and analyzed for linkage. Two-point logarithm of odds scores were negative and ranged from -12.6 for the CYP11B2 polymorphic marker to -0.98 for the D8S527 marker at a recombination distance (theta) of 0. Multipoint logarithm of odds score analysis confirmed the exclusion of the chromosome 8q21-8qtel area as a region harboring the candidate gene for FH-II in this family. We conclude that FH-II shares autosomal dominant inheritance and hyperaldosteronism with FH-I, but, as demonstrated by the large kindred investigated in this report, it is clinically and genetically distinct. Linkage analysis demonstrated that the CYP11B2 gene is not responsible for FH-II in this family; furthermore, chromosome 8q21-8qtel most likely does not harbor the genetic defect in this kindred.