276 resultados para large deviation theory

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of antiferromagnetic spin fluctuations on two-dimensional quarter-filled systems is studied theoretically. An effective t-J(')-V model on a square lattice which accounts for checkerboard charge fluctuations and next-nearest-neighbor antiferromagnetic spin fluctuations is considered. From calculations based on large-N theory on this model it is found that the exchange interaction J(') increases the attraction between electrons in the d(xy) channel only, so that both charge and spin fluctuations work cooperatively to produce d(xy) pairing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Great Barrier Reef Marine Park, an area almost the size , of Japan, has a new network of no-take areas that significantly improves the protection of biodiversity. The new marine park zoning implements, in a quantitative manner, many of the theoretical design principles discussed in the literature. For example, the new network of no-take areas has at least 20% protection per bioregion, minimum levels of protection for all known habitats and special or unique features, and minimum sizes for no-take areas of at least 10 or 20 kat across at the smallest diameter Overall, more than 33% of the Great Barrier Reef Marine Park is now in no-take areas (previously 4.5%). The steps taken leading to this outcome were to clarify to the interested public why the existing level of protection wets inadequate; detail the conservation objectives of establishing new no-take areas; work with relevant and independent experts to define, and contribute to, the best scientific process to deliver on the objectives; describe the biodiversity (e.g., map bioregions); define operational principles needed to achieve the objectives; invite community input on all of The above; gather and layer the data gathered in round-table discussions; report the degree of achievement of principles for various options of no-take areas; and determine how to address negative impacts. Some of the key success factors in this case have global relevance and include focusing initial communication on the problem to be addressed; applying the precautionary principle; using independent experts; facilitating input to decision making; conducting extensive and participatory consultation; having an existing marine park that encompassed much of the ecosystem; having legislative power under federal law; developing high-level support; ensuring agency Priority and ownership; and being able to address the issue of displaced fishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidimensional spatiotemporal parametric simultons (simultaneous solitary waves) are possible in a nonlinear chi((2)) medium with a Bragg grating structure, where large effective dispersion occurs near two resonant band gaps for the carrier and second-harmonic field, respectively. The enhanced dispersion allows much reduced interaction lengths, as compared to bulk medium parametric simultons. The nonlinear parametric band-gap medium permits higher-dimensional stationary waves to form. In addition, solitons can occur with lower input powers than conventional nonlinear Schrodinger equation gap solitons. In this paper, the equations for electromagnetic propagation in a grating structure with a parametric nonlinearity are derived from Maxwell's equation using a coupled mode Hamiltonian analysis in one, two, and three spatial dimensions. Simultaneous solitary wave solutions are proved to exist by reducing the equations to the coupled equations describing a nonlinear parametric waveguide, using the effective-mass approximation (EMA). Exact one-dimensional numerical solutions in agreement with the EMA solutions are also given. Direct numerical simulations show that the solutions have similar types of stability properties to the bulk case, providing the carrier waves are tuned to the two Bragg resonances, and the pulses have a width in frequency space less than the band gap. In summary, these equations describe a physically accessible localized nonlinear wave that is stable in up to 3 + 1 dimensions. Possible applications include photonic logic and switching devices. [S1063-651X(98)06109-1].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field in such structures consists of forward and backward propagating components at the fundamental frequency and its second harmonic. Analytic continuous wave (CW) solutions are obtained, and the intricate complexity of their stability, due to the large number of equations and number of free parameters, is revealed. The stability boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW solutions are unstable. However, stable regions are found in the nonlinear Schrodinger equation limit, and also when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing equations. The stable regions found have possible applications in second-harmonic generation and dark solitons, while the unstable regions maybe useful in the generation of ultrafast pulse trains at relatively low intensities. [S1063-651X(99)03005-6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of carbon gasification with O-2 and CO2 was conducted by using density functional theory calculations. It was found that the activation energy and the number of active sites in carbon gasification reactions are significantly affected by both the capacity and manner of gas chemisorption. O-2 has a strong adsorption capacity and the dissociative chemisorption of O-2 is thermodynamically favorable on either bare carbon surface or even isolated edge sites. As a result, a large number of semiquinone and o-quinone oxygen can be formed indicating a significant increase in the number of active sites. Moreover, the weaker o-quinone C-C bonds can also drive the reaction forward at (ca. 30%) lower activation energy. Epoxy oxygen forms under relatively high O-2 pressure, and it can only increase the number of active sites, not further reduce the activation energy. CO2 has a lower adsorption capacity. Dissociative chemisorption of CO2 can only occur on two consecutive edge sites and o-quinone oxygen formed from CO2 chemisorption is negligible, let alone epoxy oxygen. Therefore, CO2-carbon reaction needs (ca 30%) higher activation energy. Furthermore, the effective active sites are also reduced by the manner Of CO2 chemisorption. A combination of the higher activation energy and the fewer active sites leads to the much lower reaction rate Of CO2-carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lanczos algorithm is appreciated in many situations due to its speed. and economy of storage. However, the advantage that the Lanczos basis vectors need not be kept is lost when the algorithm is used to compute the action of a matrix function on a vector. Either the basis vectors need to be kept, or the Lanczos process needs to be applied twice. In this study we describe an augmented Lanczos algorithm to compute a dot product relative to a function of a large sparse symmetric matrix, without keeping the basis vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a direct method of partitioning the 840 Steiner triple systems of order 9 into 120 large sets. The method produces partitions in which all of the large sets are isomorphic and we apply the method to each of the two non-isomorphic large sets of STS(9).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pore-network connectivity on binary liquid-phase adsorption equilibria using the ideal adsorbed solution theory (LAST) was studied. The liquid-phase binary adsorption experiments used ethyl propionate, ethyl butyrate, and ethyl isovalerate as the adsorbates and commercial activated carbons Filtrasorb-400 and Norit ROW 0.8 as adsorbents. As the single-component isotherm, a modified Dubinin-Radushkevich equation was used. A comparison with experimental data shows that incorporating the connectivity of the pore network and considering percolation processes associated with different molecular sizes of the adsorptives in the mixture, as well as their different corresponding accessibility, can improve the prediction of binary adsorption equilibria using the LAST Selectivity of adsorption for the larger molecule in binary systems increases with an increase in the pore-network coordination number, as well with an increase in the mean pore width and in the spread of the pore-size distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: To report the long-term outcome of a series of 49 patients who underwent three horizontal muscle squint surgery for large angle infantile esotropia. Methods: The patient records were retrospectively reviewed of 49 (24 girls [49%], 25 boys) consecutive patients with infantile esotropia of angle greater than or equal to60 Delta, who had undergone three horizontal muscle surgery performed by one surgeon (author GG). Surgery consisted of bilateral medial rectus recession combined with graded unilateral lateral rectus resection. Surgeries were carried out over a 6-year period with a mean follow-up period of 32.9 months (3.7-71.8 months). Results: Using Kaplan-Meier life-table analysis, cumulative surgical success (orthotropia +/-10 Delta) was 93.9% at 1 week, 91.8% at 2 and 6 months, 87.7% at 12 and 18 months, 79.9% at 2 years, 77.1% at 3, 4 and 5 years, and 70.6% at 6 years. The mean preoperative deviation was 68.7 Delta. The mean age at surgery was 12.9 months. The failure rate was independent of preoperative deviation. Prevalence of residual esotropia (>10 Delta) varied from 2.0% at 1 week to 17.0% at 6 years. Similarly the prevalence of consecutive exotropia (>10 Delta) varied from 4.0% at 1 week to 12.4% at 6 years. Conclusion: Operating in a graded fashion on three horizontal muscles in children with large angle infantile esotropia has a high success rate, even over long-term follow up. Based on the study's results, amounts of surgery for a given angle of strabismus are proposed.