3 resultados para isothermal thermo-gravimetric analysis
em University of Queensland eSpace - Australia
Resumo:
Double- walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67 - 4 nm and 1.96 - 3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10 - 30 nm in diameter with high purity ( about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.
Resumo:
The diffusion of styrene into linear low density polyethylene in a solution of supercritical CO2 was investigated using NMR microimaging. For both pure styrene and styrene dissolved in supercritical CO2, the diffusion was found to follow Fickian kinetics. Supercritical CO2 was found to enhance the rate and extent of diffusion of styrene into the substrate by up to three times under the conditions of this investigation, compared to pure styrene. NMR imaging was used to measure the concentration profiles of the styrene penetrants in real time, and the results were fitted to a Fickian model for diffusion. At a CO2 pressure of 150 bar and temperature of 40 degrees C, the diffusion coefficient of a 30 wt-% solution of styrene into LLDPE was calculated to be 1 X 10(-11) m(2). s(-1). This is significantly faster than the diffusion coefficient measured for pure styrene diffusion at 40 degrees C (3 x 10(-12) m(2). s(-1)). The diffusion coefficients determined by gravimetric analysis were slightly higher than those determined by the imaging method. This was probably due to residual styrene and/or polystyrene adhering to the surface of the films in the gravimetric technique.
Resumo:
This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.