3 resultados para ion-neutral reactions, astrochemistry, interstellar medium
em University of Queensland eSpace - Australia
Resumo:
A number of very small isolated H II regions have been discovered at projected distances up to 30 kpc from their nearest galaxy. These H II regions appear as tiny emission-line objects in narrowband images obtained by the NOAO Survey for Ionization in Neutral Gas Galaxies (SINGG). We present spectroscopic confirmation of four isolated H II regions in two systems; both systems have tidal H I features. The results are consistent with stars forming in interactive debris as a result of cloud-cloud collisions. The Halpha luminosities of the isolated H II regions are equivalent to the ionizing flux of only a few O stars each. They are most likely ionized by stars formed in situ and represent atypical star formation in the low-density environment of the outer parts of galaxies. A small but finite intergalactic star formation rate will enrich and ionize the surrounding medium. In one system, NGC 1533, we calculate a star formation rate of 1.5 x 10(-3) M-. yr(-1), resulting in a metal enrichment of similar to 1 x 10(-3) solar for the continuous formation of stars. Such systems may have been more common in the past and a similar enrichment level is measured for the metallicity floor'' in damped Lyalpha absorption systems.
Resumo:
The incorporation of organic matter ( OM) in soils that are able to rapidly sorb applied phosphorus ( P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1 - 100 mM, concentrations much higher than those in soils ( generally < 0.05 mM). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal - chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption ( as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.
Resumo:
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L-3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraaza-cyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2](2+) (Chart 1). By contrast, Stern-Volmer analysis of intermolecular quenching of [ZnL2](2+) by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.