89 resultados para inventory methods
em University of Queensland eSpace - Australia
Resumo:
This paper critically assesses several loss allocation methods based on the type of competition each method promotes. This understanding assists in determining which method will promote more efficient network operations when implemented in deregulated electricity industries. The methods addressed in this paper include the pro rata [1], proportional sharing [2], loss formula [3], incremental [4], and a new method proposed by the authors of this paper, which is loop-based [5]. These methods are tested on a modified Nordic 32-bus network, where different case studies of different operating points are investigated. The varying results obtained for each allocation method at different operating points make it possible to distinguish methods that promote unhealthy competition from those that encourage better system operation.
Resumo:
We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.
Resumo:
There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.
Resumo:
The artificial dissipation effects in some solutions obtained with a Navier-Stokes flow solver are demonstrated. The solvers were used to calculate the flow of an artificially dissipative fluid, which is a fluid having dissipative properties which arise entirely from the solution method itself. This was done by setting the viscosity and heat conduction coefficients in the Navier-Stokes solvers to zero everywhere inside the flow, while at the same time applying the usual no-slip and thermal conducting boundary conditions at solid boundaries. An artificially dissipative flow solution is found where the dissipation depends entirely on the solver itself. If the difference between the solutions obtained with the viscosity and thermal conductivity set to zero and their correct values is small, it is clear that the artificial dissipation is dominating and the solutions are unreliable.
Resumo:
Conferences that deliver interactive sessions designed to enhance physician participation, such as role play, small discussion groups, workshops, hands-on training, problem- or case-based learning and individualised training sessions, are effective for physician education.
Resumo:
An investigation was undertaken to test the effectiveness of two procedures for recording boundaries and plot positions for scientific studies on farms on Leyte Island, the Philippines. The accuracy of a Garmin 76 Global Positioning System (GPS) unit and a compass and chain was checked under the same conditions. Tree canopies interfered with the ability of the satellite signal to reach the GPS and therefore the GPS survey was less accurate than the compass and chain survey. Where a high degree of accuracy is required, a compass and chain survey remains the most effective method of surveying land underneath tree canopies, providing operator error is minimised. For a large number of surveys and thus large amounts of data, a GPS is more appropriate than a compass and chain survey because data are easily up-loaded into a Geographic Information System (GIS). However, under dense canopies where satellite signals cannot reach the GPS, it may be necessary to revert to a compass survey or a combination of both methods.
Resumo:
The ability to predict leaf area and leaf area index is crucial in crop simulation models that predict crop growth and yield. Previous studies have shown existing methods of predicting leaf area to be inadequate when applied to a broad range of cultivars with different numbers of leaves. The objectives of the study were to (i) develop generalised methods of modelling individual and total plant leaf area, and leaf senescence, that do not require constants that are specific to environments and/or genotypes, (ii) re-examine the base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence, and (iii) assess the method of calculation of individual leaf area from leaf length and leaf width in experimental work. Five cultivars of maize differing widely in maturity and adaptation were planted in October 1994 in south-eastern Queensland, and grown under non-limiting conditions of water and plant nutrient supplies. Additional data for maize plants with low total leaf number (12-17) grown at Katumani Research Centre, Kenya, were included to extend the range in the total leaf number per plant. The equation for the modified (slightly skewed) bell curve could be generalised for modelling individual leaf area, as all coefficients in it were related to total leaf number. Use of coefficients for individual genotypes can be avoided, and individual and total plant leaf area can be calculated from total leaf number. A single, logistic equation, relying on maximum plant leaf area and thermal time from emergence, was developed to predict leaf senescence. The base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence were 8, 34, and 40 degrees C, and apply for the whole crop-cycle when used in modelling of leaf senescence. Thus, the modelling of leaf production and senescence is simplified, improved, and generalised. Consequently, the modelling of leaf area index (LAI) and variables that rely on LAI will be improved. For experimental purposes, we found that the calculation of leaf area from leaf length and leaf width remains appropriate, though the relationship differed slightly from previously published equations.
Resumo:
Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha 3 beta 2 and alpha 3 beta 4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr(15)]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr(15)]EpI solved at a resolution of 1.1 Angstrom using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo try direct methods. The [Tyr(15)]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr(15)]EpI, PnIA, PnIB, and MII, have an alpha 4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr(15)]EpI has the same backbone fold as the other alpha 4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr(15)]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr(15)]EpI and MII may have different binding modes for the same receptor subtype.
Resumo:
This paper investigates the effective diagnostic technique(s) for assessing the condition of insulation in aged power transformers. A number of electrical, mechanical and chemical techniques were investigated. Many of these techniques are already used by the utility engineers and two comparatively new techniques are proposed in this paper. Results showing the effectiveness of these diagnostics are presented and correlation between the techniques are also presented. Finally, merits and suitability of different techniques are discussed in this paper.
Resumo:
A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.