52 resultados para internal transcribed spacer-2
em University of Queensland eSpace - Australia
Resumo:
We studied the internal transcribed spacer 2 (ITS2) in twenty-two spp. of ticks from the subfamily Rhipicephalinae. A 104-109 base pair (bp) region was Imperfectly repeated In most ticks studied. Mapping the number of repeat copies on to a phylogeny from the ITS2 showed that there have been many Independent gains and losses of repeats. Comparison of the sequences of the repeat copies Indicated that in most taxa concerted evolution had played little if any role in the evolution of these regions, as the copies clustered by sequence position rather than species, In our putative secondary structure, each repeat copy can fold into a distinct and almost identical stem-loop complex; a gain or loss of a repeat copy apparently does not impair the function of the ITS2 in these ticks.
Resumo:
Ixodes holocyclus has a narrow, discontinuous distribution along the east coast of Australia. We studied ticks from 17 localities throughout the geographic range of this tick. The ITS2 of I. holocyclus is 793 bp long. We found nucleotide variation at eight of the 588 nucleotide positions (1.4%) that were compared for all ticks. There were eight different nucleotide sequences. Most sequences were not restricted to a particular geographic region. However, sequences F, G and H, which had an adenine at position 197, were found only in the far north of Queensland - all other ticks had a guanine at this position. The low level of intraspecific variation in this tick (0.7%) contrasts with the sequence divergence between L holocyclus and its close relative, I. cornuatus (13.1 %). These data indicate that L holocyclus does not contain cryptic species despite possible geographic isolation of some populations. We conclude that variation in the ITS2 is likely to be informative about the phylogeny of the group.
Resumo:
ITS2 sequences are used extensively in molecular taxonomy and population genetics of arthropods and other animals yet little is known about the molecular evolution of ITS2. We studied the secondary structure of ITS2 in species from each of the six main lineages of hard ticks (family Ixodidae). The ITS2 of these ticks varied in length from 679 bp in Ixodes scapularis to 1547 bp in Aponomma concolor. Nucleotide content varied also: the ITS2 of ticks from the Prostriata lineage (Ixodes spp.) had 46-49% GC whereas ITS2 sequences of ticks from the Metastriata lineage (all other hard ticks) had 61-62% GC. Despite variation in nucleotide sequence, the secondary structure of the ITS2 of all of these ticks apparently has five domains. Stems 1, 3, 4 and 5 of this secondary structure were obvious in all of the species studied. However, stem 2 was not always obvious despite the fact that it is flanked by highly conserved sequence motifs in the adjacent stems, stems 1 and 3. The ITS2 of hard ticks has apparently evolved mostly by increases and decreases in length of the nucleotide sequences, which caused increases, and decreases in the length of stems of the secondary structure. This is most obvious when stems of the secondary structures of the Prostriata (Ixodes spp.) are compared to those of the Metastriata (all other hard ticks). Increases in the size of the ITS2 may have been caused by replication slippage which generated large repeats, like those seen in Haemaphysalis humerosa and species from the Rhipicepalinae lineage, and the small repeats found in species from the other lineages of ticks.
Resumo:
The entire internal transcribed spacer ( ITS) region, including the 5.8S subunit of the nuclear ribosomal DNA ( rDNA), was sequenced by direct double-stranded sequencing of polymerase chain reaction (PCR) amplified fragments. The study included 40 Sporobolus ( Family Poaceae, subfamily Chloridoideae) seed collections from 14 putative species ( all 11 species from the S. indicus complex and three Australian native species). These sequences, along with those from two out-group species [ Pennisetum alopecuroides ( L.) Spreng. and Heteropogon contortus ( L.) P. Beauv. ex Roemer & Schultes, Poaceae, subfamily Panicoideae], were analysed by the parsimony method (PAUP; version 4.0b4a) to infer phylogenetic relationships among these species. The length of the ITS1, 5.8S subunit and ITS2 region were 222, 164 and 218 base pairs ( bp), respectively, in all species of the S. indicus complex, except for the ITS2 region of S. diandrus P. Beauv. individuals, which was 217 bp long. Of the 624 characters included in the analysis, 245 ( 39.3%) of the 330 variable sites contained potential phylogenetic information. Differences in sequences among the members of the S. pyramidalis P. Beauv., S. natalensis (Steud.) Dur & Schinz and S. jacquemontii Kunth. collections were 0%, while differences ranged from 0 to 2% between these and other species of the complex. Similarly, differences in sequences among collections of S. laxus B. K. Simon, S. sessilis B. K. Simon, S. elongatus R. Br. and S. creber De Nardi were 0%, compared with differences of 1-2% between these four species and the rest of the complex. When comparing S. fertilis ( Steud.) Clayton and S. africanus (Poir.) Robyns & Tourney, differences between collections ranged from 0 to 1%. Parsimony analysis grouped all 11 species of the S. indicus complex together, indicating a monophyletic origin. For the entire data set, pair-wise distances among members of the S. indicus complex varied from 0.00 to 1.58%, compared with a range of 20.08-21.44% among species in the complex and the Australian native species studied. A strict consensus phylogenetic tree separated 11 species of the S. indicus complex into five major clades. The phylogeny, based on ITS sequences, was found to be congruent with an earlier study on the taxonomic relationship of the weedy Sporobolus grasses revealed from random amplified polymorphic DNA ( RAPD). However, this cladistic analysis of the complex was not in agreement with that created on past morphological analyses and therefore gives a new insight into the phylogeny of the S. indicus complex.
Resumo:
DNA sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) were determined for 11 species from four genera of Didymozoinae (Indodidymozoon, Helicodidymozoon, Rhopalotrema and Neometadidymozoon) and a species of the Lecithasteridae, Lecithaster stellatus. Sequences were used to test the validity of species recognised on morphological criteria and to infer phylogenetic relationships. Sequences of the 11 didymozoids differed by 0.5% to 19%. Our phylogenetic analyses: (i) indicate that species in the genera Helicodidymozoon and Rhopalotrema are a monophyletic group; (ii) support separation of the genus Helicodidymozoon from the genera Indodidymozoon and Neometadidymozoon; and (iii) support recognition of Rhopalotrema as a genus distinct from Neometadidymozoon. We found the gonochoristic species, I. pearsoni and I. suttiei, to be genetically similar to the hermaphroditic species in the genus Indodidymozoon and found no evidence to indicate that they belong in a separate genus.
Resumo:
Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.
Resumo:
We inferred the phylogeny of 33 species of ticks from the subfamilies Rhipicephalinae and Hyalomminae from analyses of nuclear and mitochondrial DNA and morphology. We used nucleotide sequences from 12S rRNA, cytochrome c oxidase I, internal transcribed spacer 2 of the nuclear rRNA, and 18S rRNA. Nucleotide sequences and morphology were analyzed separately and together in a total-evidence analysis. Analyses of the five partitions together (3303 characters) gave the best-resolved and the best-supported hypothesis so far for the phylogeny of ticks in the Rhipicephalinae and Hyalomminae, despite the fact that some partitions did not have data for some taxa. However, most of the hidden conflict (lower support in the total-evidence analyses compared to that in the individual analyses) was found in those partitions that had taxa without data. The partitions with complete taxonomic sampling had more hidden support (higher support in the total-evidence analyses compared to that in the separate-partition analyses) than hidden conflict. Mapping of geographic origins of ticks onto our phylogeny indicates an African origin for the Rhipicephalinae sensu lato (i.e., including Hyalomma spp.), the Rhipicephalus-Boophilus lineage, the Dermacentor-Anocentor lineage, and the Rhipicephalus-Booophilus-Nosomma-Hyalomma-Rhipicentor lineage. The Nosomma-Hyalomma lineage appears to have evolved in Asia. Our total-evidence phylogeny indicates that (i) the genus Rhipicephalus is paraphyletic with respect to the genus Boophilus, (ii) the genus Dermacentor is paraphyletic with respect to the genus Anocentor, and (iii) some subgenera of the genera Hyalomma and Rhipicephalus are paraphyletic with respect to other subgenera in these genera. Study of the Rhipicephalinae and Hyalomminae over the last 7 years has shown that analyses of individual datasets (e.g., one gene or morphology) seldom resolve many phylogenetic relationships, but analyses of more than one dataset can generate well-resolved phylogenies for these ticks. (C) 2001 Academic Press.
Resumo:
Approximately 1-2% of the tropical abalone Haliotis asinina inhabiting Heron Island Reef are infected with opecoelid digeneans. These largely inhabit the haemocoel surrounding the cerebral ganglia and digestive gland-gonad complex, and infected abalone typically have significantly reduced or ablated gonads. Observations of infected abalone reveal two distinct cercarial emergence patterns, one which correlates tightly with the abalone's highly regular and synchronous fortnightly spawning cycle, and the other which occurs in a circadian pattern. The former appears to be a novel emergence strategy not previously observed in digeneans. While the cercariae in all abalone are morphologically indistinguishable, comparison of sequences from the internal transcribed spacer 2 (ITS 2) region of the ribosomal DNA reveals a 5.7% difference between cercariae displaying different emergence patterns, indicating these are two distinct species that probably belong to the same genus. The ITS 2 sequences of the species with the daily emergence pattern are identical to that of an undescribed adult opecoelid from the gut of the barramundi cod, Cromileptes altivelis. Combined molecular, morphological and emergence data suggest that while these opecoelid cercariae use the same first intermediate host and are closely related species-members of the genus Allopodocotyle-they fill different ecological niches that are likely to include different definitive hosts.
Resumo:
Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.
Resumo:
Most populations and some species of ticks of the genera Boophilus (5 spp.) and Rhipicephalus (ca. 75 spp.) cannot be distinguished phenotypically. Moreover, there is doubt about the validity of species in these genera. I studied the entire second internal transcribed spacer (ITS 2) rRNA of 16 populations of rhipicephaline ticks to address these problems: Boophilus,microplus from Australia, Kenya, South Africa and Brazil (4 populations); Boophilus decoloratus from Kenya; Rhipicephalus appendiculatus from Kenya, Zimbabwe and Zambia (7 populations); Rhipicephalus zambesiensis from Zimbabwe (3 populations); and Rhipicephalus evertsi from Kenya. Each of the 16 populations had a unique ITS 2, but most of the nucleotide variation occurred among species and genera. ITS 2 rRNA can be used to distinguish the populations and species of Boophilus and Rhipicephalus studied here. Little support was found for the hypothesis that B. microplus from Australia and South Africa are different species. ITS 2 appears useful for phylogenetic inference in the Rhipicephalinae because in genetic distance, maximum likelihood, and maximum parsimony analyses, most branches leading to species had >95% bootstrap support. Rhipicephalus appendiculatus and R, zambeziensis are closely related, yet their ITS 2 sequences could be distinguished unambiguously. This lends weight to a previous proposal that Rhipicephalus sanguineus and Rhipicephalus turanicus, and Rhipicephalus pumlilio and Rhipicephalus camicasi, respectively, are conspecific, because each of these pairs of species had identical sequences for ca. 250 bp of ITS 2 rRNA.
Resumo:
Rapid and sensitive polymerase chain reaction (PCR) methods ape described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R, solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74-97, 455-475, 1454-1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division TI (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii, or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum, 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.
Resumo:
We surveyed the larval habitats of member,, of the Anopheles punctulatus group of mosquitoes on Niolam (Lihir) Island. Papua New Guinea. Identification of this group was undertaken by polymerase chain reaction-restriction fragment length polymorphism analysis of the amplified internal transcribed spacer unit 2 of rDNA. because morphologic separation of member species is unreliable. The most widespread malaria vector species and their most common larval habitats identified to aid source-reduction programs for malaria control. The most ubiquitous species was An. punctulatus, followed by An. farauti no. 2. then An. farauti s.s. Anopheles punctulatus has increased relative to An.farauti s.l. since the start of development projects on Lihir Island. The most common larval habitats were shallow temporary pools with clay substrate and with plants or floatage. These habitats. mostly encountered alongside poorly drained roads, may be increased by development projects.
Resumo:
Whereas terrestrial animal populations might show genetic connectivity within a continent, marine species, such as hermatypic corals, may have connectivity stretching to all corners of the planet. We quantified the genetic variability within and among populations of the widespread scleractinian coral, Plesiastrea versipora along the eastern Australian seaboard (4145 km) and the Ryukyu Archipelago (Japan, 681 km) using sequences of internal transcribed spacers (ITS1-2) from ribosomal DNA. Geographic patterns in genetic variability were deduced from a nested clade analysis (NCA) performed on a parsimony network haplotype. This analysis allowed the establishment of geographical associations in the distribution of haplotypes within the network cladogram, therefore allowing us to deduce phylogeographical patterns based under models of restricted gene flow, fragmentation and range expansion. No significant structure was found among Ryukyu Archipelago populations. The lack of an association between the positions of haplotypes in the cladogram with geographical location of these populations may be accounted for by a high level of gene flow of P. versipora within this region, probably due to the strong Kuroshio Current. In contrast, strong geographical associations were apparent among populations of P. versipora along the south-east coast of Australia. This pattern of restricted genetic connectivity among populations of P. versipora on the eastern seaboard of Australia seems to be associated with the present surface ocean current (the East Australian Current) on this side of the south-western Pacific Ocean.