9 resultados para intermediate energy heavy-ion beam

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of varying-thickness Au-films were thermally evaporated onto poly(styrene-co-acrylonitrile) thin film surfaces. The Au/PSA bi-layer targets were then implanted with 50 keV N+ ions to a fluence of 1 × 1016 ions/cm2 to promote metal-to-polymer adhesion and to enhance their mechanical and electrical performance. Electrical conductivity measurements of the implanted Au/PSA thin films showed a sharp percolation behavior versus the pre-implant Au-film thickness with a percolation threshold near the nominal thickness of 44 Å. The electrical conductivity results are discussed along with the film microstructure and the elemental diffusion/mixing within the Au/PSA interface obtained by scanning electron microscopy (SEM) and ion beam analysis techniques (RBS and ERD).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the dynamics of protein recruitment to DNA lesions, ion beams can be used to generate extremely localized DNA damage within restricted regions of the nuclei. This inhomogeneous spatial distribution of lesions can be visualized indirectly and rapidly in the form of radiation-induced foci using immunocytochemical detection or GFP-tagged DNA repair proteins. To analyze faster protein translocations and a possible contribution of radiation-induced chromatin movement in DNA damage recognition in live cells, we developed a remote-controlled system to obtain high-resolution fluorescence images of living cells during ion irradiation with a frame rate of the order of seconds. Using scratch replication labeling, only minor chromatin movement at sites of ion traversal was observed within the first few minutes of impact. Furthermore, time-lapse images of the GFP-coupled DNA repair protein aprataxin revealed accumulations within seconds at sites of ion hits, indicating a very fast recruitment to damaged sites. Repositioning of the irradiated cells after fixation allowed the comparison of live cell observation with immunocytochemical staining and retrospective etching of ion tracks. These results demonstrate that heavy-ion radiation-induced changes in sub-nuclear structures can be used to determine the kinetics of early protein recruitment in living cells and that the changes are not dependent on large-scale chromatin movement at short times postirradiation. © 2005 by Radiation Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the evolution of structural defects in AlxGa1-xN films (with x=0.0-0.6) bombarded with kilo-electron-volt heavy ions at 77 and 300 K. We use a combination of Rutherford backscattering/channeling spectrometry and cross-sectional transmission electron microscopy. Results show that an increase in Al content not only strongly enhances dynamic annealing processes but can also change the main features of the amorphization behavior. In particular, the damage buildup behavior at 300 K is essentially similar for all the AlGaN films studied. Ion-beam-produced disorder at 300 K accumulates preferentially in the crystal bulk region up to a certain saturation level (similar to50%-60% relative disorder). Bombardment at 300 K above a critical fluence results in a rapid increase in damage from the saturation level up to complete disordering, with a buried amorphous layer nucleating in the crystal bulk. However, at 77 K, the saturation effect of lattice disorder in the bulk occurs only for xgreater than or similar to0.1. Based on the analysis of these results for AlGaN and previously reported data for InGaN, we discuss physical mechanisms of the susceptibility of group-III nitrides to ion-beam-induced disordering and to the crystalline-to-amorphous phase transition. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion implantation can be used to confer electrical conductivity upon conventional insulating polymers such as polyetheretherketone (PEEK). We have implanted PEEK films using three different types of ion implantation: conventional inert gas and metal ion implantation, and ion beam mixing. We have applied a number of analytical techniques to compare the chemical, structural and electrical properties of these films. The most effective means of increasing electrical conductivity appears to be via ion beam mixing of metals into the polymer, followed by metal ion implantation and finally, inert gas ion implantation. Our results suggest that in all cases, the conducting region corresponds to the implanted layer in the near surface to a depth of similar to750 Angstrom (ion beam mixed) to similar to5000 Angstrom (metal ion). This latter value is significantly higher than would be expected from a purely ballistic standpoint, and can only be attributed to thermal inter-diffusion. Our data also indicates that graphitic carbon is formed within the implant region by chain scission and subsequent cross-linking. All ion implanted samples retained their bulk mechanical properties, i.e. they remained flexible. The implant layers showed no signs of de-lamination. We believe this to be the first comparative study between different implantation techniques, and our results support the proposition that soft electronic circuitry and devices can be created by conductivity engineering with ion beams. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion implantation of normally insulating polymers offers an alternative to depositing conjugated organics onto plastic films to make electronic circuits. We used a 50 keV nitrogen ion beam to mix a thin 10 nm Sn/Sb alloy film into the subsurface of polyetheretherketone and report the low temperature properties of this material. We observed metallic behavior, and the onset of superconductivity below 3 K. There are strong indications that the superconductivity does not result from a residual thin film of alloy, but instead from a network of alloy grains coupled via a weakly conducting, ion-beam carbonized polymer matrix. (c) 2006 American Institute of Physics.